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ABSTRACT

Recommender systems in industry generally include two stages:
recall and ranking. Recall refers to efficiently identify hundreds
of candidate items that user may interest in from a large volume
of item corpus, while the latter aims to output a precise ranking
list using complex ranking models. Recently, graph representation
learning has attracted much attention in supporting high quality
candidate search at scale. Despite its effectiveness in learning em-
bedding vectors for objects in the user-item interaction network,
the computational costs to infer users’ preferences in continuous
embedding space are tremendous. In this work, we investigate the
problem of hashing with graph neural networks (GNNs) for high
quality retrieval, and propose a simple yet effective discrete rep-
resentation learning framework to jointly learn continuous and
discrete codes. Specifically, a deep hashing with GNNs (HashGNN)
is presented, which consists of two components, a GNN encoder
for learning node representations, and a hash layer for encoding
representations to hash codes. The whole architecture is trained
end-to-end by jointly optimizing two losses, i.e., reconstruction
loss from reconstructing observed links, and ranking loss from
preserving the relative ordering of hash codes. A novel discrete
optimization strategy based on straight through estimator (STE)
with guidance is proposed. The principal idea is to avoid gradient
magnification in back-propagation of STE with continuous embed-
ding guidance, in which we begin from learning an easier network
that mimic the continuous embedding and let it evolve during the
training until it finally goes back to STE. Comprehensive exper-
iments over three publicly available and one real-world Alibaba
company datasets demonstrate that our model not only can achieve
comparable performance compared with its continuous counterpart
but also runs multiple times faster during inference.
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1 INTRODUCTION

Recommender system has become the fundamental tool in our
daily life to support various services online, i.e., web search and
E-commerce platforms. Given a query, the recommendation engine
is expected to recommend a small set of items that users prefer
from the database. In practice, this process contains two important
stages: Recall and Ranking. Recall process aims to efficiently re-
trieval hundreds of candidate items from the source corpus, e.g.,
million items, while ranking refers to generate a accurate ranking
list using predictive ranking models. Currently, network embed-
ding approach has been extensively studied in recommendation
scenarios to improve the recall quality at scale. These methods aim
to represent each object in the user-item interaction network with
a low-dimensional continuous embedding vector z € RY, expecting
that similar users or items have similar embeddings. Among them,
graph neural networks (GNNs) [16, 24], as a special instantiation of
neural networks for structured data, have achieved state-of-the-art
performance in information retrieval [10]. Despite their retrieval
quality, the computational costs to filter such a number of candi-
dates in continuous embedding space are expensive, due to the
inference inefficiency with O(Nd) computational complexity for
linear search in the worse case, where N is the total number of
objects in corpus. Therefore, it’s a promising direction to improve
the efficiency of recall stage in real-world recommendation.

To overcome the computational barriers, hashing [51] has at-
tracted increasing attention due to its great efficiency in retrieving
from large data. The basic idea of hashing is to construct a map-
ping functions to index each object into a compact binary code,
minimizing the Hamming distances for similar objects and maximiz-
ing on dissimilar ones. Recently, hand-craft feature based models
[13, 14, 33] and deep models [9, 27, 31, 59] have been proposed,
where the formers seek hashing function on hand-crafted features
and separate the encoding of feature representations from their
quantization to hashing codes, resulting in sub-optimal solutions.
The latters jointly learn feature representations and hashing projec-
tions. While encouraging performances are reported in these meth-
ods, the key disadvantage of them is that they need to first learn
continuous representations which are then binarized into hashing
codes in a separated post-step with sign thresholding. Therefore,
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with continuous relaxation, these methods essentially solve an op-
timization problem that deviates from the hashing objectives, and
may fail to generate compact binary codes. Besides, for those deep
hashing methods that are mainly tailored to generate high quality
binary codes, the representative ability of associated continuous
embeddings may be poor as shown in Figure 1. We can observe
that the retrieval accuracy of state-of-the-art hashing methods are
inferior to the corresponding continuous embeddings in recom-
mendation scenarios. As a result, it impedes the implementation of
finer-level ranking in recommender systems.

To bridge the gap, we propose an end-to-end discrete represen-
tation learning framework that can optimize over both continuous
and binary representations, which embraces two challenges. First,
to accurately generate binary hash codes h from associated continu-
ous embeddings z, we need to adopt the sign function h = sign(z) as
activation on the top of hashing layer. However, the gradient of sign
function is zero for all nonzero values in z, which makes standard
back-propagation infeasible, resulting in h and z not compatible.
Second, unlike classification problem, in recommendation scenar-
ios we care more relative ranking ordering. Therefore, training
losses that merely focus on reconstruction probability of observed
link [16] or semantic label information [24] will fail to preserve
the ranking structure in hashing codes, making hamming space
retrieval ineffective. Optimizing deep hashing networks with sign
activation that could output high quality binary hashing codes
as well as satisfactory continuous embeddings remains an open
problem for learning to hash.

To address the challenges above, we propose a novel end-to-end
learning framework for hashing graph data, named HashGNN. The
developed model is generally applicable to arbitrary GNNs. The
learned hash codes could improve the efficiency of item retrieval,
while the associated continuous representations could improve the
capacity of ranking model in modern recommender system. The
whole architecture is optimized towards a task-specific loss function
that not only preserves the topology of input graph but also main-
tains its ranking structure in the hamming space. To enable truly
end-to-end training, we adapt a novel discrete optimization strategy
based on straight through estimator (STE) [2] with guidance. We
first argue that STE may incur noisy gradients in back-propagation
by magnifying the gradient of corresponding continuous embed-
ding based optimization. Then we introduce a guidance approach
to eliminate the gradient noise of STE, and turn it into a different
problem that is easier to optimize. The contribution of this paper is
summarized as follows:

o We tackle the problem of unsupervised hashing with GNNs
trained in a end-to-end manner, in which both high quality
hashing codes and continuous embeddings are returned. To
the best of our knowledge, this paper represents the first
effort towards this target in recommendation.

o A simple discrete optimization strategy is adapted to op-
timize the parameters, which facilitates both efficient and
effective retrieval in downstream tasks.

o Extensive experiments on four real-world datasets of differ-
ent volumes demonstrate the advantages of our proposal
over several state-of-the-art hashing techniques.
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2 RELATED WORK

We briefly group the related works into two categories: graph rep-
resentation learning, learning to hash. The former draws upon
research in encoding objects in graph into continuous represen-
tations, while the latter investigates encoding objects into binary
hash codes.

Graph representation learning. This line of work has been
studied and analyzed widely in social network analysis and recom-
mendation scenarios [17, 45, 57]. Representatives including models
based on matrix factorization [32, 40, 47], random walks [8, 15, 39]
or deep learning [4, 49, 50]. Among them, graph neural networks,
as a special instantiation of convolutional neural networks for struc-
tured data, has received a lot of attention for its great power in
generating embedding [24, 56] as well as scalability for large-scale
graphs [55]. Although the aforementioned methods have been
proved to be very effective in generating embeddings, they are
sufferred from inference inefficient due to the high computational
cost of similarity calculation between continuous embeddings.
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Figure 1: Comparisons between GraphSage [16] and state-of-
the-art hashing methods on Gowalla. We can observe that
GraphSage performs significantly better than others on rec-
ommendation scenarios. It indicates the gap between con-
tinuous embedding and corresponding binary hash code.

Learning to hash. Researches in this direction has proceeded
along two dimensions: unsupervised hashing and supervised hash-
ing [52]. Unsupervised hashing methods [14, 22, 34, 41] aim to learn
hash functions that encode objects to binary codes by training from
unlabeled data, while supervised hash methods [26, 33, 36, 43] target
to explore supervised signals to help in generating more discrim-
inative hash codes. Thanks to the development of deep learning,
researchers also resort to blend the power of deep learning for hash
coding [9, 27, 30, 43, 54, 59] recently. Although encouraging perfor-
mance are reported in the these deep hash methods, they all need to
first learn continuous deep representations, and then generate the
exactly binary hash codes by binarizing the learned representations
with a separated post-step, which is actually deviates significantly
from the original hash objects, thus may result in substantial loss of
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retrieval quality [14]. A recent work named HashNet [6] proposes
to lower the quantization error of binarization by continuation
technique. It approximates the sign function with scaled tanh func-
tion tanh(fz), where f is a scale parameter that will be increased
during training proceeds. Although HashNet is helpful in reducing
the quantization error with scaled tanh function, it still needs sign
function to generate exactly binary hash codes after training.

The discrete optimization approach used in our work is related
to STE [2], which can be seen as the base case of our proposed
optimization strategy. STE uses sign function to generate exactly
hash code in forward pass, and copies the gradient of h directly to
z in back-propagation. It has been applied in many works [42, 48]
to help the end-to-end learning of discrete codes. However, as we
proved in section 4, standard STE is usually hard to train because
of the noisy gradients contained in back-propagation due to the
operation of gradient hard copy. Therefore, we adapt a guidance
aware strategy to eliminate the influence of noisy gradients in STE
and enable it can mimic the learning process of corresponding
continuous embedding based optimization problem, in which faster
training and better performance are achieved.

3 THE PROPOSED MODEL

In this section, we first introduce notations and define the research
problem. Then, for our model, we describe the forward pass of
graph encoder and hash layer for generating binary hash code.
Finally, we introduce the ranking loss function for hashing.

3.1 Problem Formulation

We are given a graph G = {V, &, X} as input, where V denotes the
set of vertices and v € V represents anode in V. & €V XV de-
notes the edges. A € RN*N s the adjacency matrix, where A; j=1
denotes a link exists between v; and v}, and otherwise A;; = 0.
X € RNXD js the associated attributes, x; denotes the attributes of
the v;. In our settings of recommender systems, we focus on bipar-
tite networks consisting of users and items. For simplicity, v may
denote either type of nodes in G. The goal of our model is to learn
a nonlinear hash function that maps a node v to hamming space,
ie. H : V — h e {-1,1}K. Specifically, we first build a graph
encoder ¢ : V —u e R4 to generate intermediate representation
for the node. Then, the intermediate representation is fed into a
hash layer ¢ : u — h to learn binary hash codes. We denote ©4
and ©y as trainable parameters for the graph encoder and hash
layer, respectively.

To measure the fitness of H in an unsupervised manner, we
consider a differentiable computational graph that takes a pair
of nodes v; and v; as inputs, and measures the probability that
determines the existence of corresponding linkage. Assuming that
L denotes the loss function. The goal of obtaining {h;;i = 1,..., N}
is to solve for @4, ©y via minimizing L(A|X, 04, Oy).

3.2 Graph Encoder

As introduced above, ¢ is a graph encoder that takes graph as input
and outputs an intermediate vector u; for any node v;. In general,
the choice of ¢ is very flexible and can be instantiated by any deep
representation methods as discussed in [7]. In this work, we con-
sider a two-layer graph convolutional network GCN [16]. The major
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step of embedding generation in GCN is to aggregate information
from a node’s local neighbors. Let uﬁ denote the representation of
node v; on layer of depth [, then the forward propagation rule is:

ul = o(W' - MEAN{uj ™ U {ul "' |Vo; e N@i)}}), (1)

where W is the weight matrix on layer I, MEAN refers to the
average aggregator over feature vectors of the current node and its

neighborhood nodes, and N(v;) denotes the local neighborhood of

v;. The final output is u; = ug'"‘”‘, where [, 45 denotes the depth
of final layer.

3.3 Hash Code Embedding

In this section, we introduce the forward propagation of the hash
layer to generate binary hash codes for nodes in G. Given the
intermediate representation u; of node v;, a fully-connected hash
layer is adopted to transform u; into K-dimensional embedding
vector z; € RK as follows:

Zj = O'(WTlli + b), (2)

where W € R4*K s the parameter matrix, b € RX is the bias matrix.
To enforce the resultant embedding to be binary, the activation
function o(-) is usually set as tanh function. In order to generate
exactly binary hash code, we resort to convert the K-dimensional
vector z;, which is continuous in nature, to binary code h; with
values of either +1 or —1 by taking the sign function, so that:

+1, ifz; >0

h; = sign(z;) = { (3

— 1, otherwise

Given the graph encoder and hash layer defined as above, a natural
follow-up question is how to learn the parameters of our model.
Different from classification learning tasks, where the label informa-
tion is available to support supervised or semi-supervised learning,
graph representation learning task often focuses on unsupervised
learning, in which the goal is to generate similar vector embeddings
for topologically similar nodes so that the graph structure could be
preserved as much as possible. For each pair of node in G, the like-
lihood function P(A;;jh;, hj) can be interpreted as the conditional
probability that the link connection between v; and v equals Aj;
given their hash codes h; and h;, which could be naturally defined
as pairwise logistic function as follows

o(dist(h;, hj)), Ajj=1

1 - o(dist(h;, hj)), Ajj =0, @)

P(Ajjlh;, hy)) = {

where o(-) is the standard sigmoid function, dist(,-) represents
the distance measure. Note that there exists a nice relationship
between hamming distance hamgy;g; (-, -) and inner product (-, -)
for binary hash codes, where hamg;g;(h;,hj) = %(K - (hi,h;)),
thus we adopt inner product to define dist(-, -). In this case, the
smaller the hamming distance is, the larger the conditional prob-
ability P(1]h;,h;) will be, and vice versa. Therefore, Equation 4
is a reasonable extension of logistic regression classifier for the
pairwise classification problem based on hash codes. Hence, we can
achieve the optimal parameters when the following loss function
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Figure 2: The architecture of HashGNN (better viewed in color). Our method consists of two main components: (1) a graph
neural networks for learning deep representation of each node v;, (2) a fully-connected hash layer with tanh activation for
transforming the deep representation into K-dimensional continuous embedding z; € RX, which is then fed into sign function
to generate K-bit hash code h; € {1, -1}X. The whole architecture is trained end-to-end by jointly optimizing two losses, i.e.,
cross-entropy loss to recover the observed links and ranking loss to preserve the relative similarity ordering of hash codes.
Bernoulli random variable Q is introduced to provide average dropout of hash codes and continuous embeddings, which en-
ables the discrete optimization problem is guided by continuous counterpart. Red arrows denotes gradient back-propagation.

is minimized:

Leross = — Z Ajjlog(o((hi, hj))+(1-A;j) log(1—o((h;, h;))),
A eA
(5)

where L¢ross represents the cross-entropy loss that helps to recon-
struct the observed links. © = {©4,© } are the overall trainable
parameters in our model. By minimizing Equation 5, we obtain
binary hash codes that share similar values between linked nodes,
so that the network topological information can be stored in the
hamming space.

3.4 Ranking Preserving Hash Coding

In general, Equation 5 helps in learning useful embedding vectors
for nodes in graphs, and also ensure similar nodes to have similar
representations. In recommender systems, however, relative rank-
ings between candidate items are often more important than their
absolute similarity scores [5, 18, 38, 58], since recommendation
engines return items mainly according to their rankings. For this
reason, the learned hash codes in Equation 5 may lack the capa-
bility of mapping relevant objects to be within a small hamming
ball, which is very important for high quality retrieval in the ham-
ming space [5]. In addition, since we target graph data, the ranking
structure can be obtained easily in practice by sampling from the
adjacency matrix. Inspired by this fact, we propose to preserve the
relative similarity ordering of nodes in terms of the hamming space
and introduce a ranking structure reinforced loss function £, ;,%-
Specifically, assuming that (v;, vj,vm) € D is a triplet denoting
that v; is more similar to v; compared to vy, and D is the set of
all such sampled triplets. The ranking loss objective is defined as:

Lrane= . max(0,~0((hi, b)) +o((hi, hm))+a), (6)

(Uisvj,vm)ED

where « is the margin parameter that helps control the difference be-
tween similar and dissimilar hash codes. By minimizing Equation 6,
the binary hash codes of neighbors for node v; will be concentrated
in a small hamming radius near v; than nodes that are not con-
nected with v;. Hence, high quality hamming space retrieval can
be achieved. We fix « to 0.2 in experiments.

3.5 Recommendation Inference

We now briefly introduce the schema of how to recommend rel-
evant items given a query. After training HashGNN, we use the
forward pass of the architecture to generate binary hash code h and
continuous embedding z for each node in the input graph. Given
a query g, assuming that hy and z4 are the corresponding hash
code and continuous embedding, respectively, we basically have
two ways to do inference that trades off efficiency and effectiveness.
The first is Hamming Space Retrieval, in which a list of items are
retrieved by sorting hamming distances of hash codes between the
query and items in search pool. The second is Hierarchical Search,
in which it first retrieves a small set of candidates using hamming
space retrieval, and then conduct the final recommendation by
ranking the returned candidates with their continuous embeddings.
The former strategy mainly focuses on efficiency, while the latter
one aims to trade-off between efficiency and performance.
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4 END-TO-END LEARNING OF HASH CODE

By combining the considerations discussed above, the overall loss
function to be minimized is formulated as

L = Lcrass + A‘Crank

=— Z Aijlog(o({hi, b)) + (1 — Azj)log(1 - o({hy, h;)))
AjjEA
+A Z max(0, o ((h;, h;}) + o((h;, hm)) + @),
(vi,vj,vm) €D
7
where A is the trade-off parameter to balance the importance be-
tween entropy and ranking loss. Note the combination of pair-wise
ranking loss and point-wise reconstruction loss is usually helpful
for recommendation [58]. Ideally, we hope the above loss function
is differentiable w.r.t. parameters © = {84, 0}, so that it can be
optimized through standard stochastic gradient descent or its vari-
ants [23]. Unfortunately, as the sign function is non-smoothing, its
gradient is ill-defined as zero, making it apparently incompatible
with back-propagation. In order to train our model in an end-to-end
fashion, we approximate the gradient similar to straight through
estimator STE [2]. That is, we use sign function to generate hash
code h = sign(z) in forward pass, where we copy the gradients from
h directly to z in backward pass. With such gradient approximation,
it is possible to optimize the hash model via back-propagation.

4.1 Learning with Guidance

Although STE is simple to implement and has been widely applied
for its effectiveness in approximating the gradient of discrete vari-
ables [42, 48], it suffers from the gradient magnification problem as
shown in Lemma 4.1, which makes the training unstable and may
cause sub-optimal solutions. This phenomenon is similar to the well
known gradient explosion problem, which has been a key difficulty
in training deep neural networks via back-propagation [28].

Lemma 4.1. Straight-through estimator (STE), which enables the
optimization of discrete variables by copying their gradients directly
to corresponding continuous variables, could result in sub-optimal
solutions due to the magnification of gradients.

Proof. Assuming that H is an arbitrary graph neural network
with tanh activation function in the final layer. It takes a node
v as input and outputs an embedding denoted as z. If we con-
sider cross entropy loss, then for a pair of nodes (v;, vj), we have
L(yijlvi, vj) = yijlog(a(ij)) + (1 — yij)(1 — log(a(3i5))), where

0ij = z,-ij and yj; is the ground truth. Let g, denotes the gradient

%, we have g;,; = g;,,2; for standard unsupervised graph repre-
ij

sentation learning. Now if we have the sign function on the top of
H that helps generate binary hash code denoted as h, and want to

learn the hash code end-to-end, that is §j;; = hl-th. In this case, it is

easily obtain the new gradient denoted as g3‘¢ = gff“’ = gy,;h,- We
1

can see that g3*¢ differs from g, ,; in the lash term, h; for g3L€ while

zj for gg;;. Recall that h; = sign(z;) and z; is the output of tanh
function, then Vm, zj;; < hjn,, Hence, the optimization problem of
STE is similar to standard graph representation learning excepting
the magnification of gradients with binarization. The gradient mag-
nification of STE could impede solving for the optimal parameters
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that standard representation learning could achieve, because STE
consistently takes a larger step in searching optimal gradients.

Based on the above discussion, we know that STE actually op-
timizes a similar problem with standard representation learning
methods, except the magnification of gradients in each step. Since
graph representation learning approaches are usually easy to train
and can generate high quality embedding vectors [3], a natural
question is can we assist the optimization process of STE with
the help of corresponding continuous embedding? Motivated by
their connections, we propose to associate the regular continuous
embedding vector z; during training, and make the exactly hash
codes mimic the corresponding continuous embedding vectors, so
that both of them are simultaneously optimized for the task. More
specifically, during training, instead of using the generated binary
hash codes, we use a dropout average of them as follows,

hi=Q0z +(1-Q)oh;, ®)

where Q represents a Bernoulli random variable with parameter p
for selecting between regular continuous embedding vectors and
the exactly hash codes. When p is set to a relatively high probability,
even if h; is difficulty to learn, z; can still be learned to assist
the improvement of the task-specific parameters, which in turn
helps hash code generation. In addition, the guidance formulation
above can be seen as a variant of Dropout [44]. Instead of randomly
setting a portion of the activations in h to zeros when computing
the parameters gradients, we update them with the continuous
counterparts, which can help to generalize better.

In experiments, instead of setting p with a fixed value by hyper-
parameter tuning, we use a large p at early iterations, and then grad-
ually decrease p as training proceeds, as inspired by recent studies
in continuation methods [1]. By gradually reducing p during train-
ing, it results in a sequence of optimization problems converging to
the original optimization problem of STE. As shown in experiments,
it improves both training process and testing performance.

5 EXPERIMENTS

In this section, we conduct experiments over three recommendation
datasets to validate the proposed approach. Specifically, we try to
answer the following questions:

e Q1: How effective is the proposed method compared to base-
lines in the hamming space retrieval?

e Q2: How does HashGNN perform compared with state-of-
the-art deep hashing methods in hierarchical retrieval search
tasks?

e Q3: What the benefits of STE with continuous embedding
guidance compared with original STE?

e Q4: How do different hyper-parameter settings (e.g., trade-
off parameter A, number of triplets for each node, embedding
dimension K) affect HashGNN?

5.1 Datasets

To evaluate the effectiveness of HashGNN, we conduct experiments
on four benchmark datasets, some of publicly accessible and differ
in terms of domain and size. We summarize the statistics of three
datasets in Table 1.
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Figure 3: Recommendation performance comparison for Hamming Space Retrieval.

Table 1: Statistics of the datasets.

Dataset ‘ #Users #Items #Interactions
MovieLens 6,040 3,952 1,000,209
Gowalla 29,585 40,981 1,027,370
Pinterest 55,187 9,916 1,500,809
Alibaba 601,946 | 4,167,708 28,489,957

Gowalla: This is the check-in dataset [29] obtained from Gowalla,
in which users share their locations by check-in. To ensure the
quality of the dataset, we retain users and items with at least ten
interactions similar to [53].

MovieLens: This is widely used movie rating dataset !. We treat it
as a heterogeneous networks where links exist between users and
movies. Similar to [20], we transform the rating scores into binary
values, so that each entry is either 1 or 0 indicating whether the
user rated the movie. The 1M version is used in our experiments.
Pinterest: This is an implicit feedback data constructed for image
recommendation [12]. We treat users and images as nodes. The link
represents a pin on an image initiated by a user. Each user has at
least 20 links.

Alibaba: This dataset is a subset of user behavior data in A+ com-
pany. It describes user’s historical behaviors including click, chart
and purchase toward items during September 9 to September 15,
2019. The data is organized similar to MovieLens dataset, i.e., a
user-item behavior consists of user ID, item ID, item’s, behavior
type and timestamp. We filter the users that has less than 10 inter-
actions for experiments and use the former six consecutive days
for training while the last day for testing.

For the previous three datasets, we randomly select 70% of his-
torical interactions of each user to constitute the training set, and
treat the remaining as test set. From the training set, we randomly
select 10% of interactions as validation set to tune hyper-parameters.
For each observed user-item interaction, we treat it as a positive
instance, and then construct ranking triplets by sampling from
negative items that the user did not consume before.

Uhttps://grouplens.org/datasets/movielens/1m/

5.2 Experimental Settings

5.2.1 Evaluation Metrics. For each user in the test set, we treat
all the items that the user has not interacted with as the negative
items. To evaluate the performance of top-n recommendations, we
adopt two widely used evaluation metrics [19]: hit rate (HR) and
normalized discounted cumulative gain (ndcg) over varying numbers
of top returned items. The average results over all users in the test
set are reported.

5.2.2 Baselines. To the best of our knowledge, these is no ex-
isting work that directly study the problem of unsupervised deep
hashing with graph neural networks, so we adapt several baselines
that have shown strong performance on image retrieval task for
comparison. In addition, we also include several state-of-the-art
recommendation methods that based on network embedding.

e PTE [46], BiNE [11], MF [35] and Graphsage [16]: They
are commonly used embedding methods for recommenda-
tion. Here we build our proposed hashing model based on
GraphSage for its scalability and deep expressive ability.

e LSH [13]: This is a state-of-the-art unsupervised hashing
method. For fair comparison, the input feature is the output
of Graphsage.

e HashNet [6]: This is the state-of-the-art deep hashing method
based on continuation methods [1]. We adapt it for graph
data by replacing the original AlexNet [25] architecture with
graph neural networks.

e Hash_gumb: This is the implementation of learning to hash-
ing with Gumbel-softmax [21]. The basic idea is to treat each
bit element as a one-hot vector of size two. In the top of hash
layer, we use Gumbel-softmax trick instead of sign function
to generate hash codes. Note that by gradually decreasing the
temperature parameter towards zero, it can obtain exactly
binary hash codes in theory.

e Hash_ste: This is the implementation of state-of-the-art
end-to-end hash learning method based on straight through
estimator [2]. It is also a special case of our model.

o HashGNN_sp: This is a variant of the proposed method by
separating the graph embedding generation process with
hash function learning. It first trains Graphsage to obtain
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Table 2: Recommendation performance comparison for Hierarchical Search.

WWW °20, April 20-24, 2020, Taipei, Taiwan

‘ MovieLens Gowalla Pinterest

| HR@50 HR@100 ndeg@50 nde@100 | HR@50 HR@100 ndeg@50 nde@100 | HR@50 HR@100 ndeg@50 nde@100
LSH 0.063 0.127 0.143 0.192 0.165 0.235 0.282 0.378 0.044 0.093 0.066 0.117
HashGNN_sp 0.108 0.177 0.207 0.272 0.219 0.261 0.375 0.443 0.052 0.113 0.083 0.127
Hash_gumb 0.136 0.220 0.234 0.324 0.264 0.335 0.452 0.507 0.098 0.172 0.104 0.149
Hash_ste 0.145 0.225 0.249 0.335 0.331 0.363 0.485 0.516 0.126 0.208 0.127 0.175
HashNet 0.185 0.216 0.266 0.372 0.346 0.388 0.502 0.530 0.169 0.282 0.147 0.188
HashGNN_nr 0.223 0.340 0.294 0.405 0.378 0.423 0.533 0.557 0.189 0.315 0.162 0.204
MF 0.187 0.256 0.276 0.383 0.345 0.369 0.504 0.523 0.041 0.072 0.104 0.152
PTE 0.159 0.249 0.257 0.353 0.344 0.356 0.498 0.517 0.031 0.052 0.088 0.125
BiNE 0.209 0.289 0.283 0.392 0.363 0.389 0.515 0.546 0.109 0.248 0.117 0.186
GraphSage 0.228 0.354 0.304 0.411 0.389 0.434 0.542 0.563 0.193 0.317 0.166 0.213
HashGNN 0.248 0.373 0.325 0.431 0.405 0.443 0.551 0.572 0.212 0.334 0.176 0.234

node embeddings. The learned embeddings are then used as
input feature to train the hash layer.

e HashGNN_nr: This is a variant of the proposed method by
excluding ranking loss. We introduce this variant to help
investigate the benefit of using triplet loss.

5.2.3 Parameter Settings. For fair comparison, all methods are
implemented in Tensorflow. We adopt a two layer graph convolu-
tional networks [16] for graph encoding, where the embedding size
for first and second layer are fixed as 128 and 68 for all datasets,
respectively. We optimize all models with the Adam optimizer
with a mini-batch size of 256. All weights are initialized from a
zero-centered Normal distribution with standard deviation 0.02,
and the learning rate is fixed as 0.001. For HashNet, the scale
parameter f for tanh(x) = (fx) is initially set as 1, and then
it increases exponential after 200 iterations as suggested in [6].
The temperature for Hash_gumb is implemented with initial value
1 by tf.contrib.distributions.RelaxedOneHotCategorical according
o [21]. For network embedding approaches, we use the default
parameter used in original papers. In our method, the trade off
parameter A is tuned from 0.1 to 1 with step size 0.1; parameter p
for Bernoulli distribution is started with 1 and then we decrease it
5% after 250 iterations on all datasets. Without specification, the
default embedding size is 32.

5.3 Performance Comparison on Hamming
Space Retrieval (Q1)

In this section, we evaluate the effectiveness of our proposed method
in generating hash codes. Specifically, the retrieved products for
each user are obtained by sorting hamming distances of hash codes
between each user and all candidate items. Figure 3 reports the
results in terms of HR for different top-n values. The results on
ndcg are similar, we omit them for space limitation.

From the figure, we have four observations. First, LSH sepa-
rates the encoding of feature representation from hashing and it
achieves poor performance on three datasets. This indicates the
importance of jointly learning feature representation and hash pro-
jections for high quality hash code generation. Second, HashNet and
Hash_gumb are two widely used continuous relaxation based ap-
proaches for hash learning. But HashNet outperforms Hash_gumb

in several cases. A possible reason is HashNet adopts continua-
tion methods to train the model, which approximates the original
hard optimization problem with sign function with a sequence of
soft optimization problems, making it easier to learn. Third, Com-
pared to HashNet, although Hash_ste is a truly end-to-end hashing
method, it is still outperformed by HashNet in most cases. It makes
sense since Hash_ste will magnify the gradients, which makes it
deviated from standard continuous embedding learning problem.
This demonstrates our motivation to guide ste with continuous
embedding. Fourth, In general, HashGNN consistently yields the
best performance on all the datasets. Increasing the number of
n has positive influence on the performance of all methods. By
using continuous embedding guidance, HashGNN is capable of
mimicking the learning process of continuous embedding opti-
mization, while ste deviates from continuous embedding learning
problem by magnifying gradients. This verifies the effectiveness of
continuous embedding guidance for hashing. Moreover, compared
with HashGNN_nr, HashGNN considers ranking loss to preserve
the relative similarity ordering of nodes in hamming space, while
HashGNN_nr only targets to reconstruct the observed links. This
demonstrates the importance of capturing ranking structure in ham-
ming space. And the improvements over HashGNN_sp indicate that
jointly optimizing feature representations and hash functions can
achieve better performance.

5.4 Performance Comparison on Hierarchical

Search (Q2)

In this section, we attempt to understand the representative ability
of node embeddings that learned by hashing methods as well as
continuous network embedding approaches. Towards this end, we
conduct experiments on three datasets and evaluate the perfor-
mance based on hierarchical search. Different from hamming space
search, hierarchical search needs both hash codes and continuous
embeddings for inference. Therefore, it measures the ability of hash-
ing models in generating high quality binary codes as well as good
continuous embeddings. The results are shown in Table 2.

From Table 2, we have four findings. First, Compared with hash-
ing approaches, HashGNN_nr performs significantly better than
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others almost in all cases. These results demonstrate the effective-
ness of the proposed guidance learning approach for optimizing
discrete variables. Second, Compared with continuous network
embedding methods, HashGNN_nr still achieves relative better per-
formance than other methods except GraphSage. It is reasonable as
HashGNN_nr is build upon powerful graph neural networks (Graph-
Sage), which outperforms other baselines significantly. These re-
sults illustrate our motivation to build hashing alternatives for
arbitrary graph neural networks. Third, By jointly analyzing Ta-
ble 2 and Figure 3, we observe that the performances of all hashing
baselines in hierarchical search scenario are higher than their per-
formance on hamming space retrieval. This indicates the limitation
of hash codes for accurate retrieval compared with continuous
embeddings. Hence, hashing models should also consider how to
generate representative continuous embeddings in order to achieve
satisfactory performance. Fourth, HashGNN consistently outper-
forms all other baselines on three datasets. Specifically, HashGNN
achieves better performance than hashing methods in most cases,
which demonstrates the effectiveness of our method in generating
high quality hash codes as well as learning representative node
embeddings. Compared with HashGNN_nr, HashGNN is capable
of preserving relative ranking structure in hamming space, while
HashGNN_nr only focuses on reconstructing the observed links.
This validates that exploring ranking structure is beneficial for
recommendation tasks.

Table 3: Top n recommendation performance on real-world
Alibaba company dataset.

‘ Alibaba

| HR@50 HR@100 ndeg@50 ndc@100
LSH 0.72% 3.65% 1.02% 2.98%
HashGNN_sp 1.17% 5.51% 1.97% 6.59%
Hash_gumb 1.81% 5.90% 2.26% 7.14%
Hash_ste 2.87% 6.78% 3.83% 8.59%
HashNet 3.63% 7.37% 5.38% 9.30%
HashGNN_nr 4.48% 9.30% 6.65% 11.18%
MF 3.31% 7.22% 5.18% 9.19%
PTE 3.11% 7.08% 4.84% 9.03%
BiNE 3.94% 8.29% 5.89% 10.22%
GraphSage 4.73% 9.86% 6.91% 11.44%
HashGNN 5.17% 10.66% 7.75% 12.84%

In addition to the three publicly accessible small datasets, we also
test the performance of our model on real-world recommendation
scenarios over Alibaba dataset. We adopt the same experimental
configurations as above, and report the results in Table 3.

From the table, we have three observations. First, The perfor-
mance of all methods in terms of HR and NDCG values significantly
lower than their values on MovieLens, Gowalla and Pinterest, while
HashGNN still consistently outperforms both hashing and contin-
uous based baselines. Second, compared with hashing methods,
HashGNN_nr achieves better performance than them in almost
all cases including Hash_ste. This result demonstrate the effective-
ness of the proposed guidance aware STE optimization strategy.

Qiaoyu Tan, et al.

Table 4: Efficiency comparison on all datasets (in seconds).
The time cost consists of computing and sorting the dis-
tances. CeS denotes continuous embedding based search,
HieS represents hierarchical search, and HamR denotes
hamming space search.

‘ MovieLens ‘ Pinterest ‘ Gowalla ‘ Alibaba
CeS 3.8 73.5 189.6 15181.7
HieS | 2.8(x 1.3) | 41.2 (x 1.7) | 82.1 (x 2.3) | 4295.8 ( 3.5)

HamR | 1.5 (x 2.5) | 27.8 (X 2.6) | 66.1 (x 2.8) | 4163.9 (X 3.6)

In addition, HashGNN_nr also performs better than most network
embedding approaches, i.e., MF, PTE and BiNE. The main reason is
that our model is build upon powerful graph neural networks given
the big performance gap between GraphSage and other baselines.
These results validate our motivation to develop hashing methods
for arbitrary graph neural networks. Third, although GraphSage
performs slightly better than HashGNN_nr, it is outperformed by
HashGNN in most cases. This comparison not only demonstrates
our model could achieve comparable performance with its con-
tinuous counterpart, but also indicates that hashing methods can
performs even better by considering the ranking structure in ham-
ming space.

Besides, we also analyze the efficiency of hierarchical search
compared with hamming space retrieval and continuous embedding
based search. For fair comparison, we adopt exhaustively linear
scan to retrieval items for hash codes and continuous embeddings.
It is worth noting that multi-level indexing techniques [37] could be
used to further improve the efficiency of hamming space retrieval.
The experiments are conducted on MacOS 10.13.6 with Inter Core
i5, 16GB RAM and python 3.6. Table 3 summarized the results.

From the table, we have two conclusions. First, hamming space
retrieval is generally faster than other two approaches, while hier-
archical search is more efficient than continuous embedding based
retrieval. By jointly analyzing Table 2,3&4, and Figure 3, we can
see that HashGNN not only can achieve better performance than
GraphSage on hierarchical search, but also saves a lot of time (on
average of 2.2 times faster). It thus verifies our motivation to com-
bine graph representation learning with hashing. Second, as data
size increases, the time cost of hierarchical search becomes closer
to that of hamming space retrieval compared with linear search
on continuous embedding space. The is mainly because hamming
space retrieval becomes the most time-consuming step of hierar-
chical search in large datasets, since the second step only needs to
compute similarity with very small set of items. This observation
validates the capacity of end-to-end hashing in handling real-world
large scale data.

5.5 Study of HashGNN (Q3)

In this section, we empirically investigate the benefits of the pro-
posed guidance aware STE optimization strategy. For fair compari-
son, we compare the performance of Hash_ste and HashGNN_nr,

where Hash_ste utilizes STE for discrete optimization while HashGNN_nr

exploits continuous embedding guidance STE. Similar to default set-
ting, we set p = 1 and gradually decrease it 5% after 250 iterations.
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Figure 4: Guidance STE VS. STE over training loss.

Figure 4 and 6 summarized the training loss and AUC scores during
training on Alibaba datasets over hierarchical search, respectively.

From the figures, we have three observations. First, the error loss
of Guidance STE decreases faster than STE, and is also significantly
lower than that of STE in general as shown in Figure 4. This is
reasonable because guidance STE solves the original hard discrete
optimization problem by dividing it into a sequence of relative
easier tasks, making it easier to optimize. This result indicates the
efficiency of guidance STE over STE. Second, after rapid decrease
of training loss, both guidance STE and STE begin to jitter, but
guidance STE is more stable than STE. Besides, the error loss value
of guidance STE also tends to increase a litter bit after 2000 epochs.
This is mainly because the p value of guidance STE decreases to 0.5,
making the discrete optimization problem becomes more difficulty
to optimize. Third, guidance STE substantially outperforms STE
in terms of AUC during training shown in Figure 6. The above
comparisons demonstrate the effectiveness and efficiency of the
proposed guidance STE compared with STE.

Besides making comparisons to STE, we also analyze the impact
of p towards guidance STE. The experiment results are shown in
Figure 7. Results on other datasets are similar. Note that when p = 1,
guidance STE is equivalent to GraphSage. From the figure, we have
two findings. First, the performance increases when p varies from
1 to 0.6, then it tends to decrease from 0.6 to 0.4, and the HR score
in 0.4 is lower than that when p = 1. The possible reason is that
when p = 1, the objective is only targeted to generate high quality
continuous embedding; while p decreases, the objective function
is optimized towards both hash code and continuous embedding,
which improves the hierarchical search performance; when p is
too small, i.e., p < 0.5, the continuous embedding signals are not
enough to guide the training. Second, dynamically changing p per-
forms substantially better than p is fixed. This this because when
p is dynamically updated, the original hard discrete optimization
problem will be divided into a sequence of sub-tasks, where each
task is generally easier to solve compared with the original one. In
addition, each previous task in the sequence could also help solve
the followed optimization tasks. Therefore, we change p dynami-
cally in our experiments.

5.6 Parameter Analysis (Q4)

In this experiment, we study the effect of different hyperparameters
to HashGNN. As A plays a pivotal role to trade-off between recon-
struction loss and ranking preserving loss, we start by exploring the
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influence of A. Then, we study how the number of triplets of each
user affects the performance. Note we report results on MovieLens
dataset, but similar results are observed on others.

5.6.1 Effect of trade-off parameter. To investigate the sensitiv-
ity of HashGNN w.r.t. A, we search A from 0 to 1 with step size
0.1. Figure 4c summarizes the experimental results on MovieLens,
where we have two observations. First, HashGNN achieves relative
stable performance when A is around 0.5, so we let A = 0.5 in our
experiments. Second, when A = 0, HashGNN performs the worst.
The reason is that when A = 0, the ranking loss is totally ignored.
It thus further demonstrates our motivation to incorporate ranking
loss for effective hashing.

5.6.2 Effect of the Number of Triplets. To study the influence
of different number of triplets on our model. We conduct additional
experiments by varying the number of triplets for each node from
1 to 25 with step size 5. Figure 4a reports the result on MovieLens.
Results on other datasets are similar, so we omit them. From the
figure, we can observe that HashGNN achieves relative stable and
high performance when the number of triplets is between 4 to
10. Therefore, we randomly sample five triplets for each node in
experiments.

5.6.3 Effect of Embedding Dimension. We now explore how
the embedding size of hash code affects HashGNN. Figure 4b lists
the performance of HashGNN with different K on MovieLens. We
can observe that the dimension of hash code has positive influence
on HashGNN. Specifically, HashGNN improves faster when K is
small, then it slows down with large dimension. Similar trends are
observed on other datasets.

6 CONCLUSION AND FUTURE WORK

In this work, we study the problem of unsupervised deep hashing
with graph neural networks for recommendation. We propose a
new framework HashGNN, which simultaneously learning deep
hash functions and graph representations in an end-to-end fash-
ion. The proposed method is flexible as it can be used to extend
existing various graph neural networks. The whole architecture is
trained by jointly optimizing two losses, i.e., reconstruction loss to
reconstruct the observed links and ranking preserving loss to pre-
serve the relative similarity ranking of hash codes. To enabling the
gradient propagation in the backward pass, we prove that the estab-
lished straight through estimator that approximates the gradient of
sign function as identity mapping may result in noisy gradients, so
we derive a novel discrete optimization strategy based on straight
through estimator with continuous guidance. We show the pro-
posed guidance is helpful in accelerating the training process as
well as improving the performance. Extensive experiments on four
real-world datasets demonstrate the effectiveness and efficiency of
HashGNN in hamming space retrieval and hierarchical search.
For future work, we plan to further improve HashGNN by incor-
porating semantic information of graph. Moreover, we are inter-
ested in exploring the adversarial learning on binary continuous
embedding for enhancing the robustness of HashGNN. Finally, we
are also interested in exploring the explainability of hash codes.
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