
Evolution of Popularity Bias: Empirical Study and Debiasing
Ziwei Zhu∗

George Mason University
Yun He
Facebook

Xing Zhao
Amazon

James Caverlee
Texas A&M University

ABSTRACT
Popularity bias is a long-standing challenge in recommender sys-
tems. Such a bias exerts detrimental impact on both users and item
providers, and many efforts have been dedicated to studying and
solving such a bias. However, most existing works situate this prob-
lem in a static setting, where the bias is analyzed only for a single
round of recommendation with logged data. These works fail to
take account of the dynamic nature of real-world recommendation
process, leaving several important research questions unanswered:
how does the popularity bias evolve in a dynamic scenario? what
are the impacts of unique factors in a dynamic recommendation
process on the bias? and how to debias in this long-term dynamic
process? In this work, we aim to tackle these research gaps. Con-
cretely, we conduct an empirical study by simulation experiments
to analyze popularity bias in the dynamic scenario and propose
a dynamic debiasing strategy and a novel False Positive Correc-
tion method utilizing false positive signals to debias, which show
effective performance in extensive experiments.

1 INTRODUCTION
Popularity bias – popular items are overly exposed in recommen-
dations at the expense of less popular items that users may find
interesting – is a long-standing challenge in recommender sys-
tems [14, 17, 18, 23, 25]. Most existing efforts to study popularity
bias adopt a static setting [14, 17, 18, 23, 25]. That is, a model is
trained over an offline dataset, and popularity bias is analyzed by
conducting a single round of recommendation. While these studies
have highlighted the prevalence of popularity bias, there is a signifi-
cant research gap in our understanding of the dynamics of this bias,
the factors impacting popularity bias and its evolution, and the effi-
cacy of methods to mitigate this bias under real-world assumptions
of system evolution. Hence, this paper proposes a framework for
the study of popularity bias in dynamic recommendation.

Dynamic recommendation [5, 9, 12, 19] can be viewed as a closed
loop illustrated in Figure 1. Users interact with the system through
a set of actions (e.g., clicks, views, ratings); this user-feedback data
is then used to train a recommendation model; the trained model is
used to recommend new items to users; and then the loop continues.
While there are many opportunities for bias to affect this dynamic
recommendation process, we identify three key factors that may
impact popularity bias and its evolution: (i) inherent audience size
imbalance: users may like some items more than others (even with
a purely bias-free random recommender), meaning that a few items
may have very large audience sizes while the majority have small
ones; (ii) model bias: the recommendation model itself may amplify
any imbalances in the data it ingests for training; and (iii) closed
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Figure 1: The pipeline of the dynamic recommendation.

feedback loop: since the cycle repeats, the feedback collected from
recommendations by the current model will impact the training of
future versions of the model, potentially accumulating the bias.

Specifically, we undertake a three-part study to investigate pop-
ularity bias in dynamic recommendation: (i) We conduct a compre-
hensive empirical study by simulation experiments to investigate
how the popularity bias evolves in dynamic recommendation, and
how the three factors impact the bias. (ii) We explore methods to
mitigate popularity bias in dynamic recommendation. We show
how to adapt existing debiasing methods proposed in a static set-
ting to the dynamic scenario. We further propose a model-agnostic
False Positive Correction (FPC) method for debiasing, which can be
integrated with other debiasing methods for further performance
improvements. (iii) Finally, we report on extensive experiments to
show the effectiveness of the proposed debiasing method compared
with state-of-the-art baselines.

2 RELATEDWORK
Popularity bias is a long-standing problem and has been widely
studied. Some methods adopt an in-processing strategy to miti-
gate bias by modifying the model itself [1, 17, 23], while others
adopt a post-processing strategy to mitigate bias by modifying
the predictions of the model [2, 18, 25]. One of the most typical
approaches is to debias by assigning weights inversely propor-
tional to item popularity in the loss of a model [11, 17]. By this,
popular and unpopular items can be balanced during training and
more even recommendations can be generated. Similar to this idea,
Steck [18] proposes to directly re-scale the predicted scores based
on popularity to promote unpopular items and prevent popular
items from over-recommendation. The scaling weights are also in-
versely proportional to item popularity. Besides, a recent work [23]
investigates the bias from the perspective of causal inference and
propose a counterfactual reasoning method to debias. Note that all
of these works evaluate popularity bias by comparing how often
items are recommended without regard for the ground truth of
user-item matching. To address this gap, [25] proposes the concept



Algorithm 1: Dynamic Recommendation Process
1 Bootstrap: Randomly show 𝐾 items to each user and

collect initial clicks D and train the first model𝜓 by D;
2 for 𝑡 = 1 : 𝑇 do
3 Recommend 𝐾 items to the current user 𝑢𝑡 by𝜓 ;
4 Collect new clicks and add them to D;
5 if 𝑡%𝐿 == 0 then
6 Retrain𝜓 by D;

of popularity-opportunity bias which compares the true positive
rate of items to evaluate the bias, and a popularity compensation
method is proposed, which explicitly considers user-item matching.

3 PROBLEM FORMALIZATION
3.1 Formalizing Dynamic Recommendation
Suppose we have an online platform that provides recommenda-
tions. Given we have a set of users U = {1, 2, . . . , 𝑁 } and a set of
items I = {1, 2, . . . , 𝑀} in the system. Every user has a subset of
items the user likes (unknown to the system), and we define the
total number of matched users who like the item 𝑖 as the audience
size of 𝑖 , denoted as𝐴𝑖 . At the beginning (a bootstrap step), for each
user, the system randomly exposes 𝐾 items to bootstrap the user
and thus collects initial user-item clicksD. Based on the initial data
D, the first recommendation model𝜓 , such as a matrix factoriza-
tion (MF) [10], is trained. Then, as users coming to the system one
by one, the system uses the up-to-date model to provide 𝐾 ranked
items as recommendations and collect new user-item clicks. After
every 𝐿 user visits, the system retrains the recommendation model
with all clicks collected up to now. This dynamic recommendation
process is summarized in Algorithm 1.

3.2 Formalizing Popularity Bias
We adopt the recently introduced popularity-opportunity bias [25],
which evaluates whether popular and unpopular items receive clicks
(or other engagement metrics) proportional to their true audience sizes.
In other words, do popular and unpopular items receive similar
true positive rates? At iteration 𝑡 in the dynamic recommendation
process, to quantify the popularity bias, we need to first calculate
the true positive rate for each item. Suppose item 𝑖 has received 𝐶𝑡

𝑖
clicks in total from the beginning to iteration 𝑡 , the true positive rate
for 𝑖 is 𝑇𝑃𝑅𝑖 = 𝐶𝑡𝑖 /𝐴𝑖 . Then, we can use the Gini Coefficient [4, 21]
to measure the inequality in true positive rates corresponding to
item popularity at iteration 𝑡 :

𝐺𝑖𝑛𝑖𝑡 =

∑
𝑖∈I (2𝑖 −𝑀 − 1)𝑇𝑃𝑅𝑖
𝑀

∑
𝑖∈I 𝑇𝑃𝑅𝑖

, (1)

where items are indexed from 1 to𝑀 in audience size non-descending
order (𝐴𝑖 ≤ 𝐴(𝑖+1) ). We use−1 ≤ 𝐺𝑖𝑛𝑖𝑡 ≤ 1 to quantify the popular-
ity bias 1: a small |𝐺𝑖𝑛𝑖𝑡 | indicates a low bias; 𝐺𝑖𝑛𝑖𝑡 > 0 represents
that true positive rate is positively correlated to item audience size;

1In this paper, we conduct simulation experiments with semi-synthetic data to study
the popularity bias in dynamic recommendation, in which audience size of items are
known. In practice, we need to estimate the audience size based on observed clicks,
such as inverse propensity scoring based methods from [12, 24].

Table 1: Dataset statistics.

#user #item density 𝐺𝑖𝑛𝑖(audience size)
ML1M 1,000 3,406 0.0657 0.6394
Ciao 1,000 2,410 0.0696 0.4444

and 𝐺𝑖𝑛𝑖𝑡 < 0 represents that the true positive rate is negatively
correlated to audience size (reversed popularity bias).

3.3 Factors Impacting Popularity Bias
One of the goals in this paper is to deepen our understanding of
factors that may produce and worsen this bias. As introduced in
Figure 1, we focus on three major factors:
1. Inherent audience size imbalance. Items inherently have
different audience sizes, and this imbalance can potentially lead to
popularity bias. It has been observed that the audience size for items
usually follows a long-tail distribution [14], meaning that a few
items have a very large audience size while the majority have small
ones. This inherent imbalance will result in imbalanced engagement
data (like clicks), even if every item is equally recommended by a
bias-free random recommender.
2. Model bias. A recommendation model tends to rank an item
with more clicks in the training data higher than an item with fewer
clicks, even if the ground truth is that the user equally likes both of
them [25]. This is a common deficiency of collaborative filtering
based algorithms and directly leads to popularity bias if the training
data is imbalanced.
3. Closed feedback loop. Finally, we consider the phenomenon
that future models are trained by the click data collected from the
recommendations by previous models [8, 16, 19]. In this way, the
popularity bias generated in the past can accumulate, leading to
more bias in subsequent models as the feedback loop continues.

4 EMPIRICAL STUDY
In this section, we conduct an empirical study to uncover how
the popularity bias evolves in dynamic recommendation; and the
impacts of the three discussed bias factors on the bias.

4.1 Setup
Due to the challenges of running repeatable experiments over live
platforms, we follow the widely-adopted approach [3, 5, 8, 9, 12] of
conducting experiments to simulate the dynamic recommendation
process in Section 3.1.

First, we follow [9, 12] to generate semi-synthetic data based
on real-world user-item interaction datasets. Concretely, we adopt
MovieLens 1M (ML1M) [6] and Ciao [20] as base datasets and
randomly keep 1,000 users in each dataset. Then, we run the matrix
factorization (MF) model [10] to complete the original datasets
to provide the ground truth of user-item relevance. The detailed
statistics of the semi-synthetic datasets are shown in Table 1, where
we also calculate the Gini Coefficient of the item audience size in
each dataset to quantify the inherent audience size imbalance.

Then, we conduct experiment to simulate the process in Al-
gorithm 1. Concretely, we recommend 𝐾 = 20 items to users at
each iteration; run the simulation for 𝑇 = 40, 000 iterations; and
retrain the recommendation model after every 𝐿 = 50 iterations.
To simulate user click behavior, we follow [12] and model the click



Figure 2: Results of three methods on ML1M.

behavior based on the position bias of 𝛿𝑘 = 1/𝑙𝑜𝑔2 (1 + 𝑘) to deter-
mine whether user 𝑢 will examine item 𝑖 at position 𝑘 . We observe
a click only if the user examines and likes the recommended item.
All experiments are repeated for 10 times.

4.2 Evolution of Popularity Bias
The first question to investigate is: how does popularity bias evolve
in dynamic recommendation? Here, we use the basic MF as the
recommendation model 2, and the dynamic recommendation pro-
cess involves all three bias factors introduced in Section 3.3. Results
for ML1M are shown in Figure 2, where for comparison, we also
include a Popular method to rank items only based on the number
of observed clicks so far, and a Random method to randomly rank
items. At iteration 𝑡 , we report the number of cumulative clicks up
to now as the metric evaluating recommendation utility, and we
report 𝐺𝑖𝑛𝑖 for measuring the popularity bias.

First, we observe in the left figure in Figure 2 that MF produces
significantly higher recommendation utilities than the Popular and
Random methods. Moreover, the number of cumulative clicks first
increases then converges for the Popular method, and after some
iterations the Random method can even outperform the Popular
method on both datasets, which illustrates the harm of popularity
bias. Second, we observe in the right figure that: (i) the Random
method produces near zero bias; (ii) the Popular method results in
high 𝐺𝑖𝑛𝑖 values throughout the whole experiment; and (iii) MF
first produces a rapid increase in𝐺𝑖𝑛𝑖 and then maintains this high
𝐺𝑖𝑛𝑖 value to the end of the experiment.

While it is not surprising that we observe popularity bias in
dynamic recommendation, it is surprising that a traditional MF
(which is also the foundation of many more advanced models [7,
13, 22]) boosts the bias so fast, and the produced bias nearly equals
that in a heavily-biased Popular method. Beyond static studies [25]
of popularity bias that have observed its prevalence, we observe
that this bias grows rapidly and maintains at a high level, indicating
the need for special interventions to mitigate this issue.

4.3 Impacts of Three Bias Factors
Next, we investigate the impacts of the three factors introduced in
Section 3.3.

4.3.1 Impact of Closed Feedback Loop. First, we conduct a new
experiment that removes the closed feedback loop by: (i) not us-
ing the clicks collected from personalized recommendation (by
MF) as training data; (ii) after every 𝐿 personalized recommen-
dation iterations, adding a random recommendation step to gen-
erate random rankings to 𝐿 randomly selected users and collect
random-recommendation clicks; and (iii) only using the random-
recommendation clicks to train the personalized MF model. In
2In this paper, to counteract the position bias, we adopt the inverse propensity scoring
based loss from [15] for training the MF model, where we use 𝑝𝑘 = 1/𝑙𝑜𝑔2 (1 + 𝑘) as
the propensity estimation for a click observed at position 𝑘

Figure 3: Compare popularity bias in experiments with (w/
CFL) and without closed feedback loop (w/o CFL).

this way, the MF is trained by data purely from random recom-
mendations and will not be influenced by previous personalized
recommendation models, i.e., breaking the closed feedback loop.
We evaluate the popularity bias only for personalized recommen-
dations by MF. We denote this experiment setup as w/o CFL, and
denote the experiment with closed feedback loop (the same as MF
in Section 4.2) as w/ CFL.

Because the MF in w/o CFL is trained by click data from random
recommendations, whose data size is much smaller than that in w/
CFL. Hence, it is unfair and not informative to compare the utility
between w/ CFL and w/o CFL, and we only show the popularity bias
comparison in Figure 3. From the figures we can see that compared
to w/ CFL, in w/o CFL, the popularity bias also keeps increasing but
at a much slower speed. This indicates that the closed feedback loop
does exacerbate the popularity bias. Without the closed feedback
loop, the popularity bias is only from the current recommendation
model, and there is no accumulated bias from previous models.
Notice that 𝐺𝑖𝑛𝑖 in w/o CFL still keeps increasing. This is because
the training data gets increasingly denser, making the model bias
increases as we will justify in the following section.

4.3.2 Impact of Model Bias. Next, we conduct a series of static
recommendation experiments to study the impact of model bias
on popularity bias. First, we study how the inherent audience size
imbalance influences model bias. Beside the semi-synthetic dataset
ML1M we already used, we also generate 4 variants with differ-
ent levels of inherent audience size imbalance. Now we have 5
datasets with increasing levels of audience size imbalance, denoted
as I1, I2, I3, I4, I5, and the corresponding 𝐺𝑖𝑛𝑖 of audience size are
0.37, 0.45, 0.51, 0.57, 0.64 (higher value means severer imbalance).
Result of a conventional MF model is shown in the left of Figure 4,
where we see that severer imbalance leads to increased model bias.

Next, we investigate how training data density influences the
model bias. In this case, we use the same ML1M dataset with 𝐺𝑖𝑛𝑖
of audience size 0.64, but generate 8 training datasets with dif-
ferent densities. The 8 training datasets with increasing densities
are denoted as D1,D2,D3,D4,D5,D6,D7,D8, and the correspond-
ing densities are 0.01%, 0.05%, 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2%.
Experimental result is presented in the right of Figure 4, where we
can see that with training datasets getting denser, the model bias
first increases but then deceases. This may be because with denser
data, both model bias and ability to learn user-item relevance are
improved. And after a threshold, the ability to learn user-item rele-
vance surpasses the effect of model bias, leading to lower popularity
bias observed. However in practice, dense training data is rare and
the model bias usually plays a major role.

4.3.3 Impact of Inherent Audience Size Imbalance. The inherent au-
dience size imbalance exerts its influence on popularity bias mainly
through model bias, which we already exhibit by static experiments



Figure 4: Influence of inherent audience size imbalance (left)
and training data density (right) on model bias.

in Figure 4. But how does inherent audience size imbalance impact
dynamic recommendation? To answer this, we run dynamic rec-
ommendation experiments for the 5 datasets with different levels
of inherent audience size imbalance, where all other experiment
settings are the same as the MF experiment in Section 4.2. Results
are presented in Figure 5. The left figure demonstrates that with sev-
erer inherent audience size imbalance, a system can receive more
user clicks. This is because popular items can be more easily recog-
nized and correctly recommended to matched users to receive large
amounts of clicks in imbalanced datasets. On the other hand, the
right part in Figure 5 shows that with a severer inherent audience
size imbalance, higher popularity bias is generated.

4.3.4 Summary. In sum, we find that the inherent audience size
imbalance and model bias are the main sources of popularity bias;
while the closed feedback loop can intensify the bias when inherent
audience size imbalance and model bias exist. Moreover, we also
find that higher training data density and greater imbalance can
increase the effect of model bias.

5 DEBIASING APPROACHES
While we have demonstrated the evolution of popularity bias, how
can we begin to counteract it? As we empirically studied in Sec-
tion 4.3, model bias is the most essential factor. Thus, in this section,
we focus on how to mitigate the popularity bias in dynamic recom-
mendation by reducing model bias.

Most existing works reduce popularity bias in a static setting by
reducing model bias [17, 18, 23, 25]. For example, [18] proposes a re-
scaling method (denoted as Scale) to reduce the bias by re-scaling
the outputs of recommendation models as a post-processing step.
Concretely, the re-scaled score for a user-item pair (𝑢, 𝑖) is:

𝑟̂
(𝑠𝑐𝑎𝑙𝑒𝑑)
𝑢,𝑖

= 𝑟̂
(𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

/(𝐶𝑖 )𝛼 , (2)

where 𝑟̂ (𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

is the output predicted score from a recommenda-
tion model; 𝐶𝑖 is the number of clicks the item has in training data;
𝛼 is the hyper-parameter to control the debiasing strength, higher
𝛼 means more strength for debiasing; and 𝑟̂ (𝑠𝑐𝑎𝑙𝑒𝑑)

𝑢,𝑖
is the re-scaled

score used for final ranking.
In static recommendation, this debiasing strength hyper-parameter

𝛼 is a constant. However, as we see in Section 4.3.2, model bias
is proportional to training data density and imbalance. Hence, we
propose to gradually increase 𝛼 from 0 with an increasing step Δ
through the dynamic recommendation process. Beyond the spe-
cific Scale method [18], most existing popularity debiasing meth-
ods [17, 18, 23, 25] include such a debiasing strength weight 𝛼 ,
meaning that we can apply them dynamically in the same way by
involving the increasing step Δ.

Besides, we notice that in a high popularity bias case, popular
items can be incorrectly over-recommended to unmatched users

Figure 5: Utility (left) and popularity bias (right) for datasets
with different inherent audience size imbalance.

(generating false positive signals), the false positive signal is corre-
lated with the popularity bias. If we could correct the recommen-
dations based on these false positive signals, we could lower the
popularity bias. So, we propose the False Positive Correction (de-
noted as FPC) method to correct the predicted scores based on false
positive signals in a probabilistic way. More specifically, suppose
we are going to predict the relevance 𝑟̂𝑢,𝑖 between user 𝑢 and item
𝑖 , and we already have a predicted score 𝑟̂ (𝑚𝑜𝑑𝑒𝑙)

𝑢,𝑖
from a model. As-

sume that item 𝑖 has been recommended to user𝑢 for 𝐹 times before
and has never been clicked, and we record the ranking positions of
these 𝐹 times of recommendation as {𝑘1, 𝑘2, . . . , 𝑘𝐹 }. So, the false
positive signals can be denoted as {𝑐𝑘1 = 0, 𝑐𝑘2 = 0, . . . , 𝑐𝑘𝐹 = 0},
where 𝑐𝑘 represents whether user 𝑢 clicks the item 𝑖 ranked at po-
sition 𝑘 . We further denote the probability that 𝑢 likes 𝑖 as 𝜃𝑢,𝑖 ; and
denote the probability of examining an item at ranking position
𝑘 as 𝛿𝑘 . Then, we can calculate the conditional probability that 𝑢
likes 𝑖 given the false positive signals as:

𝑃 (𝑟𝑢,𝑖 = 1|𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 = 0) = 1 −
1 − 𝜃𝑢,𝑖∏𝐹

𝑓 =1 (1 − 𝛿𝑘𝑓 𝜃𝑢,𝑖 )
, (3)

where 𝜃𝑢,𝑖 is unknown and needs to be estimated. We can use the
prediction 𝑟̂ (𝑚𝑜𝑑𝑒𝑙)

𝑢,𝑖
from a model as 𝜃𝑢,𝑖 . So, we use Equation 3 with

𝜃𝑢,𝑖 = 𝑟̂
(𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

and 𝛿𝑘𝑓 = 1/𝑙𝑜𝑔2 (1 + 𝑘𝑓 ) (as how we model the
position bias) to correct model predictions by false positive signals.

Yet, one disadvantage of FPC is that if we use 𝑟̂ (𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

from a
biased model, such as an MF, as 𝜃𝑢,𝑖 , FPC is still vulnerable to the
model bias. Thus, we propose to use the predictions from a debiased
model, such as the Scale in Equation 2 or other debiasing models
introduced in Section 2, to be 𝜃𝑢,𝑖 in Equation 3. In this case, we can
take full advantage of both true positive signals and false positive
signals to counteract the popularity bias.

6 DEBIASING EXPERIMENTS
In this section, we conduct experiments to show how the popular-
ity bias is mitigated in dynamic recommendation by dynamically
reducing model bias and the proposed FPC method.

6.1 Setup
The basic setup is the same as Section 4.1. To validate our pro-
posed FPC, we include different types of debiasing methods for
comparison. The basic recommendation model is theMF. For the
debiasingmodels, first, we consider existing static debiasingmethod
Scale[18] as introduced in Equation 2. As introduced in Section 5,
we also have the dynamic version, denoted asDScale. Last, we have
the proposed FPC method to debias based on false positive signals.
And we also combine the proposed FPC with DScale to reduce the
popularity bias utilizing both true positive and false positive signals,
denoted as FPC-DScale. For every debiasing method (except FPC),



Figure 6: Compare the static debiasing method Scale and its
dynamic version DScale.

there is a debiasing strength weight or the increasing step Δ, we
tune these hyper-parameters so that all methods achieve similar bias
level, and we compare the click counts to compare the performance.
Code available is at https://github.com/Zziwei/Popularity-Bias-in-
Dynamic-Recommendation.

6.2 Empirical Results
In the following experiments, we study the effect of dynamic de-
biasing compared with static ones; the effect of the proposed FPC;
and the effect of integrating FPC with other debiasing methods.

6.2.1 How do dynamic debiasing methods perform compared with
static ones? To show the advantage of dynamic debiasing over
static approaches, we conduct experiments with a basic MF and the
static debiasing model – Scale, compared with its dynamic version
– DScale. We tune all models so that similar popularity bias level
is achieved, and compare the number of clicks. We plot how the
utility and bias change in Figure 6. The right figure shows that
comparing to MF, both Scale and DScale reduce the bias. However,
they show very different patterns: DScale increases the bias at
the beginning then keeps decreasing the bias; while Scale keeps
increasing the bias and eventually surpasses DScale. This is because
as the experiment continues, density and imbalance in training
data increases, resulting in higher model bias and more debiasing
strength needed. So, dynamically increasing the debiasing strength
following the increasing bias can produce better results.

6.2.2 What is the effect of FPC alone? Then, we show the results of
MF and FPC in Figure 7. The right figure shows that FPC increases
the bias at the beginning, but then keeps decreasing the popularity
bias. The reduction of bias metric 𝐺𝑖𝑛𝑖 is significant. On the other
hand, the left figure shows that FPC can even increase the number
of clicks during the experiment compared with MF. This is because
by mitigating the popularity bias, popular items are prevented to be
over-recommended to unmatched users and more unpopular items
are recommended accurately and receive clicks. So, it is a win-win
scenario that both users and item providers can benefit from.

6.2.3 What is the effect of integrating FPC with other debiasing
methods? Although, FPC can reduce the bias and improve the util-
ity, it only utilizes the false positive signals without considering
the true positive signals as existing debiasing models do. Hence,
combining FPCwith other debiasing methods is expected to achieve
even better performance. To justify this, we also include results
of DScale and FPC-DScale in Figure 7 for comparison. The right
figure demonstrates that DScale and FPC-DScale are able to reduce
the bias lower than FPC. And we see that DScale and FPC-DScale
produce similar level of bias, however, the left figure shows that
FPC-DScale generates significantly more clicks, illustrating the
advantage of integrating FPC with DScale.

Figure 7: Compare MF, FPC, DScale, and FPC-DScale on
ML1M. (Medium debiasing level)

7 CONCLUSION
In this work, we investigate popularity bias in dynamic recommen-
dation. We first conduct an empirical study by simulation experi-
ments to show how the bias evolves in the dynamic process and the
impacts of four bias factors on the bias. Then, we propose to dynam-
ically debias and also propose the FPC method to debias utilizing
false positive signals. Last, by extensive experiments, we empiri-
cally validate the effectiveness of the proposed dynamic debiasing
strategy and the proposed FPC algorithm.
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