
Rabbit Holes and Taste Distortion: Distribution-Aware
Recommendation with Evolving Interests

Xing Zhao, Ziwei Zhu, and James Caverlee
Department of Computer Science and Engineering, Texas A&M University

xingzhao,zhuziwei,caverlee@tamu.edu

ABSTRACT
To mitigate the rabbit hole effect in recommendations, conventional
distribution-aware recommendation systems aim to ensure that a
user’s prior interest areas are reflected in the recommendations
that the system makes. For example, a user who historically prefers
comedies to dramas by 2:1 should see a similar ratio in recom-
mended movies. Such approaches have proven to be an impor-
tant building block for recommendation tasks. However, existing
distribution-aware approaches enforce that the target taste distribu-
tion should exactly match a user’s prior interests (typically revealed
through training data), based on the assumption that users’ taste
distribution is fundamentally static. This assumption can lead to
large estimation errors. We empirically identify this taste distortion
problem through a data-driven study over multiple datasets. We
show how taste preferences dynamically shift and how the design
of a calibration mechanism should be designed with these shifts in
mind. We further demonstrate how to incorporate these shifts into
a taste enhanced calibrated recommender system, which results
in simultaneously mitigated both the rabbit hole effect and taste
distortion problem.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommendation, Distribution, Bias, Distortion, Diversification
ACM Reference Format:
Xing Zhao, Ziwei Zhu, and James Caverlee. 2021. Rabbit Holes and Taste
Distortion: Distribution-Aware Recommendation with Evolving Interests.
In Proceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021,
Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3442381.3450099

1 INTRODUCTION
One long-standing challenge in recommender systems is the rabbit
hole effect [2, 35, 36]: as the system evolves, the recommended re-
sults may concentrate on the main areas of interest of a user, while
the user’s lesser areas of interest can be underrepresented or even
absent. By narrowing down a user’s interest areas and limiting
exploration of new areas, this rabbit hole effect can lead to unde-
sirable (and often unforeseen) outcomes, raising concerns of echo

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450099

chambers [41], fairness [18, 32, 47, 55], and diversity [6, 56]. In one
extreme direction, O’Callaghan et al. observed that users accessing
extreme right video content are likely to be recommended further
extreme right content, leading to immersion in an ideological bubble
in just a few clicks [35].

To address this rabbit hole effect, there are two main research
directions: (i) diversity-focused recommendation, e.g., [3, 4, 13, 24,
26, 56]; and (ii) distribution-aware recommendation, e.g., [1, 27, 41,
53, 54]. Diversity-focused recommendations aim to introduce the
diversification of users’ interests in the recommendations. Some
diversity-focused approaches may use the category of an item or
the genre of a movie as an “interest area” to cover more diverse
aspects [39, 45]. Other methods eschew such explicit aspects in
favor of identifying latent aspects as the basis of diversification
[46]. In another direction, distribution-aware recommendation aims
to ensure that a user’s prior taste distribution (i.e., the distribution of
interest areas) are reflected in the recommendations that a system
makes, so that the system neither over-emphasizes main interest
areas, nor under-serves lesser areas. For example, consider a user
who historically prefers comedies to dramas by 2:1. A distribution-
aware recommender would aim to make recommendations follow
a similar ratio, whereas a conventional recommender might incre-
mentally focus on comedies to the detriment of dramas. Such an
approach has proven to be an important building block for recom-
mendation tasks [1, 27, 41], and has attracted considerable attention
in the machine learning community [28, 43].

Although both diversity-focused recommenders and distribution-
aware recommenders may help mitigate the rabbit hole effect, they
further introduce a new taste distortion problem: the taste distri-
bution in recommendation results differs from a user’s actual tastes.
Diversity-focused recommenders aim to cover as many interest
areas as possible in recommendations rather than targeting a user’s
future taste distribution, resulting in the taste distortion problem.
Distribution-aware recommenders enforce that a user’s taste dis-
tribution exactly matches the user’s prior ones based on the as-
sumption that this distribution is fundamentally static (i.e., without
considering the dynamic changes and shifts of user’s interests),
leading to the taste distortion issue as well.

To illustrate this taste distortion problem, in Figure 1, we show a
random user in the MovieLens-1M dataset, where her view history
is split into training and testing in chronological order. The x-
axis in Figure 1 lists the genres, and the y-axis is the ratio of the
current genre in this user’s entire taste distribution (hence, the
sum is 1). Blue bars show the taste distribution of this user in
the training data. As we can see, this user shows great interest
in drama movies much more than others in the training set. The
recommendation result from a traditional recommender (BPR [37]
in orange) hints at the problem of the rabbit hole effect, as its

https://doi.org/10.1145/3442381.3450099
https://doi.org/10.1145/3442381.3450099
https://doi.org/10.1145/3442381.3450099

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

Figure 1: A sample user’s taste distribution on the training set (blue, being the target of the distribution-aware recommenda-
tion), BPR predicted results (orange), xQuAD predicted results (green), and testing set (red, being the ground truth). Results
suggest that none of these recommenders can provide the taste distribution in recommendations close to the ground truth.

recommendations skew towards drama even more than what is in
the training distribution. A diversity-focused method (xQuAD [44]
in green) bringsmore diverse recommendations comparing with the
traditional recommender, while a distribution-aware recommender
aims tomaintain the training distribution (in blue).However, none
of these recommendation results are close to the user’s real
taste distribution in the next stage, which is shown by the red
bars and illustrates this user’s strong interests in the horror and
thriller genres.

Hence, our objective is to simultaneously mitigate both the rab-
bit hole effect and this taste distortion problem. But, how can we
achieve this objective even in the presence of dynamically shift-
ing tastes? And how can we integrate methods to address these
problems into existing recommenders (including both traditional
and recent neural-based ones) without re-training the original rec-
ommendation pipeline? Since distribution-aware recommenders
do not only address the rabbit hole effect, but also offer benefits of
interpretability (by respecting a user’s existing preferences) and pro-
vide possibilities to control the diversification to avoid undesirable
recommendation [53], we focus in this paper on new distribution-
aware methods that can also counter the taste distortion problem.
Concretely, we propose a new taste-enhanced calibrated recom-
mender called TecRec that predicts a user’s shift in tastes, and
then incorporate these shifts into a post-ranking framework for an
improved distribution-aware recommendation.

Furthermore, many studies have shown that distribution adjust-
ment and accurate recommendation tend to trade-off with each
other [30, 41]. That is, conventional distribution-aware recommen-
dations will lead to worse prediction accuracy. However, consider-
ing users’ dynamic taste shifting enables our proposed method to
provide a better estimation of a user’s real taste distribution. Thus,
one additional benefit of our proposed recommender is the poten-
tial of even better recommendations while mitigating the rabbit
hole effect and the taste distortion problem.

In sum, this paper studies the potential of a calibrated recom-
mendation in the presence of dynamic tastes:

• First, we empirically reveal the taste distortion problem
through a data-driven study over multiple datasets, to show
how taste preferences dynamically shift and how a calibra-
tion mechanism should be designed with these shifts in mind.
• Then, we propose a Taste-Enhanced Calibrated Recommender
that is designed to firstly predict a user’s shift in preferences,

and then incorporate these shifts into a post-ranking frame-
work for an improved distribution-aware recommendation.
• Finally, we compare the proposed method against traditional
recommenders, sequential recommenders, diversity-focused
recommenders, and conventional distribution-aware recom-
menders. We show how the taste-enhanced calibration is
complementary to these approaches’ goals and can result
in a high-quality recommendation with that mitigates the
“rabbit hole effect” and “taste distortion” while evolving with
a user’s dynamically shifting tastes.

2 RELATEDWORK
This section highlights related works in distribution-aware recom-
mendations, diversity-focused approaches, and sequential recom-
mendations.

2.1 Distribution-aware Recommendation
Recently, Steck proposed a distribution-aware recommendation
(what we refer to as CaliRec in this paper), which focuses on the
distribution of genres in a user’s recommendation list [41]. This
work aims to reflect the user’s interest areas in the recommendation
result to ameliorate the rabbit hole effect through re-processing
the output of other recommender systems. Soon after, Kaya and
Bridge compared Steck’s work with intent-aware recommendations,
and proposed a new version of distribution-aware approaches and
new evaluation metrics [27]. Zhao et al. focused on the distribu-
tion of target customers (with respect to certain demographics),
proposing a post-ranking algorithm [53]. These previous studies
in distribution-aware recommendation make the strong assump-
tion that the target distribution for recommended results should
fit the overall distribution in the training data. This assumption
essentially asserts that a user’s preferences are mature and fixed,
and so post-processing should aim to match these fixed preferences.
Furthermore, these and related studies have shown that the distri-
bution adjustment and accurate recommendation tend to trade-off
with each other [30, 41, 53].

2.2 Diversity-focused Approaches
Rather than aiming to match a user’s taste distribution, some meth-
ods aim to introduce diversity into the list of ranked results [3, 4, 13,
24, 26, 56]. For example, a diversity-focused recommender may use
the category of an item or the genre of a movie as an “aspect,” with
the aim of covering many diverse aspects [39, 45]. Some methods

Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

eschew such explicit aspects in favor of identifying latent aspects
as the basis of diversification [46].

These diversity-focused approaches can ameliorate the rabbit
hole effect, but do so in a different fashion from distribution-aware
recommendations. For example, if a user watched 70 romance and
30 action movies, a diversity-focused recommender system would
avoid recommending 100% romance movies; however, it may rec-
ommend other genres to achieve diversity, like horror, documen-
taries, or other genres that are not reflected in the user’s taste
distribution. Therefore, compared with distribution-aware recom-
mendations, diversity-focused recommendations cannot provide
the interpretable diversification and provide possibilities to control
the diversification to avoid undesirable recommendation[53].

Furthermore, diversity-focused and distribution-aware recom-
mender systems also differ in terms of evaluation. Traditional
diversity-focused recommenders use feature-based metrics, such as
α-NDCG [8] or subtopic recall (S-recall) [52]. Again, such metrics
evaluate diversity (e.g., coverage of aspects) of the recommended
results. However, distribution-aware recommender systems evalu-
ate the taste distribution’s closeness in the recommended results
and a target one.

2.3 Sequential Recommendation
Another complementary approach to distribution-aware recom-
mendation is sequential recommendation, which is designed specif-
ically to track a user’s changing interests, e.g., [20, 25, 28, 33, 42].
Sequential recommenders typically combine personalized models
of user behavior with a context defined by a user’s recent activi-
ties. For example, Hidasi et al. introduced GRU4Rec which employs
Gated Recurrent Units (GRU) to model users’ click sequences for
session-based recommendation [22]. Soon after, they improved their
original work with a version that further boosts Top-N recommen-
dation performance [21]. Kang et al. proposed a self-attention based
sequential recommender system, SASRec, which models the entire
user sequence, and adaptively considers consumed items for pre-
diction [25]. Other sequential recommender systems also achieve
impressive performance, e.g., [20, 49, 50]. These methods use se-
quential activities to model a user’s latent preferences in the next
stage, however, they are not fundamentally designed with recom-
mendation distribution in mind. Therefore, the resulting recommen-
dations will not respect the requirements of taste distribution (and
again could lead to the rabbit hole effect). In experiments reported
in Section 6, we explore the connection between distribution-aware
approaches and both diversity-focused and sequential-based meth-
ods.

3 PRELIMINARIES
Suppose we have user setU, an item set I, and a binary user-item
interaction matrix H ∈ {0, 1} |U |×|I | (whereHu,i = 1 indicates that
user u ∈ U has interacted with item i ∈ I for example). H is split
into tRain (HR ∈ {0, 1} |U |×|I |), Validation (HV ∈ {0, 1} |U |×|I |),
and Test (HT ∈ {0, 1} |U |×|I |) sets by a time-series order. Further-
more, we have explicit labels of interest on the items (e.g., genre,
category, etc.), which we refer to as a genre set G. As one item may

belong to more than one genre, each item i has a genre vector ci :

ci =
[vi,д1

Σ
,
vi,д2
Σ
, · · · ,

vi,д|G|

Σ

]
(1)

where дj ∈ G, Σ =
∑

дj ∈G
vi,дj , and vi,дj is a binary variable where

vi,дj = 1 if i belongs to genre дj .

Taste Distribution on Training and Testing Sets. In the follow-
ing, we denote the ground truth taste distribution for a user as q
and the taste distribution in the training set as p.

We define u’s taste ratio for genre дj in the training set as pu,дi :

pu,дj =

∑
i ∈I HR

u,i × ci,дj∑
i ∈I HR

u,i
(2)

where HR
u,i is the entry in u

th row and ith column of HR , and HR
u,i

is 1 if user u interacted with item i in the training dataset. Thus,
user u’s entire taste distribution is:

pu =
[
pu,д1 ,pu,д2 , · · · ,pu,д|G|

]
. (3)

Similarly, we can compute user u’s taste distribution for genre
дj in the test set as qu,дj and the user’s entire taste distribution qu .
For a given historical matrix H, user u’s taste distribution in the
training set pu,дi and in the testing set qu,дj could be a fixed ratio
based on the historic interaction record.

Taste Distribution on Top-K Predicted Results.We represent
a recommender’s predicted results as a score matrix D ∈ R |U |×|I | .
Each value Du,i expresses the predicted score from user u ∈ U to
item i ∈ I. To obtain the Top-k recommended items for user u, we
can return the first k items with the largest predicted score in row
Du, :, calculated as follows (↘ symbolizes descending sort):

top(u,k) = arg sort
↘,k

[
Du,1,Du,2, · · · ,Du, |I |

]
(4)

Similarly, we calculate the predicted taste distribution, q̃Top−ku , of
predicted Top-k recommended items top(u,k) for user u as follows:

q̃Top−ku =
1
k

∑
i ∈top(u,k)

ci . (5)

4 A DATA-DRIVEN STUDY OF TASTE
DISTORTION

The key idea of distribution-aware recommenders is to incorporate
a user’s taste distribution into the recommendation results to poten-
tially benefit recommendations that fit a “desired” taste distribution.
However, a strong assumption that has been widely used is the
target distribution should fit the distribution in the training set (i.e.,
the prior data), while ignoring the dynamic shifting nature of taste
preferences. In this section, we conduct a data-driven study into the
resulting taste distortion problem. Concretely, we define the taste
distortion problem as follows:
Taste distortion problem. Consider a useru with a time-series of
interactions with several items. The taste distribution in the prior
(i.e., training data) is pu , the true distribution in the future (i.e.,
testing data) is qu , and the taste distribution of Top-k recommended
items foru by a recommender system is q̃Top−ku . We define the taste
distortion as φ(q̃Top−ku ,qu), where φ(·) denotes a distance measure,

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

#User #Item #Genre #Interaction Density

ML-1M 6,040 3,706 18 1,000,209 4.468%
ML-20M 138,493 26744 20 20,000,263 0.540%

MovieTweets 60,283 34,437 29 814,504 0.039%

Table 1: Statistics for MovieLens-1M, MovieLens-20M, and
Movie-Tweets datasets.

e.g., Kullback-Leibler (KL) divergence [31]. The larger this value is,
the worse the estimation of the taste distribution on the test set is.

4.1 Datasets and Setup
We adopt three datasets that contain clearly defined genres, which
help identify a taste distribution, and timestamps for considering
the temporal shifts in these taste distributions. The first dataset is
the MovieLens-1M (abbr. ML-1M) dataset [19], which contains 1
million user-movie interactions collected from 6,040 users and 3,706
movies. The second is the larger MovieLens-20M (abbr.ML-20M)
dataset [19], which contains 20 million user-movie interactions
collected from 138,493 users and 26,744 movies. The third is the
MovieTweets dataset [10], which contains 814,504 user-movie in-
teractions collected from 60,283 users and 34,435 movies. Due to
the sparsity of MovieTweets dataset, we only consider users who
have five or more interactions. More details are shown in Table 1.

To analyze a user’s tastes across different genres, we consider
user-item interactions (e.g., clicks, plays) rather than explicit ratings,
i.e., all interacted user-movie pairs are considered as 1. For each
movie, we use the genre available in each dataset: ML-1M contains
18 genres, ML-20M contains 20 genres, and MovieTweets contains
29 genres. One movie may belong to one or several genres. This
genre information lets us build each user’s explicit taste preference
distribution.We sort each user’s interaction history in chronological
order and split them into Training (60%), Validation (20%), and
Testing (20%) sets. By splitting in chronological order, we emulate
what information is actually available to a recommendation system
(rather than considering a random split of the data that will mix
past and future interactions).

In the following, we study the taste distortion problem in the
context of a standard recommender, Bayesian Personalized Ranking
(BPR) [37], and the conventional distribution-aware recommender
(CaliRec) [41]. Experiments with other tested algorithms show sim-
ilar results; our emphasis here is on the general problem of taste
distortion that can manifest in recommenders.

4.2 Taste Distortion in Recommendation
We begin with a look at the taste distortion problem through anal-
ysis over all three datasets. To compare the distortion between
two taste distributions a and b, we use the Kullback-Leibler (KL)
divergence [31] as the distance measure φ(·), where KL(a| |b) = 0
indicates the distributions aдj and bдj are exactly the same for all
дj ∈ G; and a larger KL(a| |b) indicates they are more distant. KL(·)
is defined as below:

KL(a∥b) = −
∑
дj ∈G

aдj log
bдj
aдj
. (6)

Figure 2: KL-Divergence between the taste distribution in
training set (p) with the ones in testing set (q), in CaliRec
results (q̃Top−100BPR+CaliRec), and in BPR results (q̃Top−100BPR).

Figure 3: KL-Divergence between the taste distribution in
ground truth (q) with the ones in training set (p), in CaliRec
results (q̃Top−100BPR+CaliRec), and in BPR results (q̃Top−100BPR).

Figure 2 shows the KL-divergence for the taste distribution on
the training dataset (p) with the ground truth taste distribution
on the testing dataset (q), CaliRec results (̃qTop−100BPR+CaliRec), and BPR
results (̃qTop−100BPR). We set the trade-off parameter λ = 0.9 and the
basis recommendation result base = BPR for CaliRec. As we can see,
the taste distributions on the testing set are far from the ones on the
training set. Encouragingly, CaliRec does significantly improve on
BPR, since it is focused on matching the distribution in the training
data. However, the training data is not reflective of the distribution
in the testing data, and so this approach may bring worse accuracy
in the recommendation.

For a comparison from another perspective, Figure 3 shows the
taste distribution on the testing set (q) versus the taste distribution
on the training set (p), the CaliRec results (̃qTop−100BPR+CaliRec), and the
BPR results (̃qTop−100BPR). Similarly, we observe a large difference of
the distribution between the training set and testing set (note the
KL divergence may differ between KL(a| |b) and KL(b| |a)). Both
CaliRec and BPR return a poor estimation of the (unknown) taste
distribution in the testing set, which is our ultimate goal. These
results validate our hypothesis that both traditional recommender

Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 4: Trends of a sample user’s taste overtime in the
training set. As time goes by, this user changed her main
taste through the path of Mystery → Sci-Fi → Comedy →
Romance→War→ Drama→ Horror.

systems and distribution-aware recommender systems could under-
serve the ground truth taste distribution. However, it also indicates
that a better estimation of taste distribution may produce more
accurate recommendation results.

4.3 An Example of Taste Distortion
Figure 4 clearly shows the time-series change of the tastes of a ran-
dom user in the ML-1M dataset. Each row indicates the frequency
of the genres the user interacted with over time. We can observe
that as time goes by, this user changed tastes through the path of
Mystery→ Sci-Fi→ Comedy→ Romance→War→ Drama→
Horror. This user’s jump in taste over time goes against the assump-
tion that the taste distribution derived from a user’s entire training
set should be the target preference for the distribution-aware rec-
ommendation. Ignoring or underestimating the time-series trends
and change of users’ preferences could bring serious estimation
errors to the distribution-aware recommendation results.

4.4 “Oracle” CaliRec with True Distribution
Finally, we explore the potential of improving distribution-aware
recommendation if the real taste distribution was known. That is,
given a user u, if we know the real (though unknown) distribution
for u in the next stage, how does a conventional distribution-aware
recommender perform? In other words, we would like to use the
real taste distribution qu instead of the prior taste distribution pu as
the target. Of course, qu is not visible to a recommender in practice;
therefore, we refer to this as an “oracle” result. Figure 5 shows the
ideal results by CaliRec using the real taste distribution in the test
set. As we can see, comparing with the base results (λ = 0, i.e.,
unchanged BPR result), this “oracle” result is significantly better
on all trade-off weight settings. This result indicates that a better

Figure 5: Recommendation results using CaliRec with prior
and real taste distribution. Comparing with the BPR results
(λ = 0), this “oracle” result is consistently better for all trade-
off settings.

estimation of the user’s taste distribution would bring improved
distribution-aware recommendation results.

5 TASTE-ENHANCED CALIBRATED
RECOMMENDATION

Our ultimate objective is mitigating both the rabbit hole effect and
taste distortion simultaneously. Since the distribution-aware recom-
mendation is inherently designed to alleviate the rabbit hole effect,
can we also mitigate taste distortion? One idea is to dynamically
learn the trends and shifts of each user’s taste distribution to better
estimate future taste preferences. Previous studies often learn a
user’s preference from the interactions in an embedded space, e.g.,
[5, 25]; here, rather than the embedded preference, we focus on pre-
dicting a user’s explicit preferences based on the given categories of
items. In the following, we introduce a Taste-enhanced calibrated
Recommendation (TecRec) that is designed to learn a user’s shift
in preferences (Section 5.1), and then incorporate these shifts into
a post-ranking framework for improved distribution-aware recom-
mendation (Section 5.2).

5.1 Learning Taste Distribution
Previous studies in distribution-aware recommendation assume a
user’s taste preference should be similar to the historical preference
in the entire training set or in the latest time window [41]. Yet, our
observations in Section 4 show that a user’s preferences frequently
shift in each observed time window. Thus, in the following, we
show how to predict a user’s taste distribution q̂ in the next stage.
Inspired by the time-series trends and changes of users’ preferences
(recall Figure 4), we propose the TecRec distribution prediction
component to learn the evolving taste distribution of users, towards
overcoming the taste distortion problem. We explore the potentials
of neural network approaches to learn these taste shifts.

5.1.1 User’s Taste Sequence. For each user-item interaction (u, i)
for u ∈ U and i ∈ I, we transform the user-item pair into user-
genre (u, ci) pair (refer to Equation 1). In this way, every user’s
historical interaction data could be transferred to a 1 × |G| vector,
which represents the user taste distribution in this timestamp.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

Figure 6: TecRec distribution prediction component, which
takes the user’s z prior time-series taste distributions as in-
put, and outputs the predicted taste distribution in the next
stage.

To summarize a user’s taste distribution in each “stage” (over
some duration, which may contain several items), we employ a
hyper-parameter step size, β . That is, we slice the N user-item inter-
action history into N

β stages, and each stage summarizes sequential
β items this user interacted with. The taste distribution of each
stage – t – can then be calculated as:

pu,t =
1
β
×

t∑
j=t−β+1

Mu,i, j × ci (7)

M ∈ N |U |×|I |×|T | is a time-expanded binary 3-D matrix from
H, whereMu,i, j = 1 indicates user u and item i have an interaction
at time j.

In addition, we use a hyper-parameter window size, z, that is
how many stages we use to predict the taste distribution at the
next stage t . Our objective is: given a user’s temporal taste distri-
butions [pu,t−z ,pu,t−z+1, · · · ,pu,t−1], to predict the user’s taste
distribution in the next stage, q̂u,t .

5.1.2 Recurrent Model. Recurrent neural networks have shown
great success in capturing the implicit dynamics of user-item inter-
actions in recommender systems (e.g., [9, 25, 48]). We now explore
the potential of using recurrent neural networks to learn the trends
and changes of a user’s explicit taste. To better understand the struc-
ture of TecRec distribution prediction component, Figure 6 shows
a simplified model structure for predicting the taste distribution
for the next stage, q̂t . To this end, TecRec takes the user’s z prior
time-series taste distributions, [pu,t−z , ..., pu,t−1], as an input.

In our task, both sequential events (inputs) and predictions (out-
puts) are the user’s explicit taste preferences (i.e., ratio of each
explicit genre), and this preference vector is highly dense with size
1 × |G|. For this reason, the prior preference sequence will directly
join the next recurrent layer without embedding.

We use ht to represent the latent vector at time t in the recur-
rent layer. A recurrent layer consists of z recurrent units. Here,
we consider three variants of recurrent units for the task of taste
preference prediction:

Traditional Recurrent unit (abbr. TRU) [11] takes the previous
latent state ht−1 and current input taste preference pt as input:

ht := σ (Wqpt +Whht−1 + b)

whereW, b are the weights and bias term for each recurrent unit,
and σ is a nonlinear activation function (tanh in this paper).
Gated Recurrent unit (abbr. GRU) [7] is a variant of traditional
recurrent unit, which introduces two more gates on each unit – an
update gate zt and a reset gate rt – to control the long short-term
dependencies. The update gate zt decides how much information
from previous time steps is going to be retained, while the reset
gate vt determines how much of the previous information is to be
forgotten with another recurrent state h̃t . Lastly, the output ht of
the GRU cell at step t is the weighted sum of the current and the
last hidden state.
Long Short-Term Memory unit (abbr. LSTM-unit) is another
variant of a traditional recurrent unit that has been shown to out-
perform TRU on numerous temporal processing tasks [14–17, 23].
Comparing with GRU, LSTM-unit introduces more gates: a forget
gate to decide what information should be kept, and an output gate
to decide what the next hidden state should be. Each LSTM-unit
ht consists of input gates it , forget gates ft , output gates ot and
cell activation vector ct at time t .

From the recurrent layer with recurrent units of TRU, GRU, or
LSTM-unit, the final recurrent unit ht−1 outputs a |G|-dimension
vector, which will go through a dense layer and be activated by the
softmax activation function. After activation, the output vector –
the predicted preference ratio for each explicit aspect (i.e., a genre
in our data) – is normalized into the same scale as the input, where
the sum of the vector is 1. This vector would then be our predicted
taste distribution, q̂t , for the next stage t , calculated by:

q̂t := so f tmax(Wdenseht−1 + bdense).

5.1.3 Learning and Evaluation. In the learning process, we adopt
the Adaptive Moment Estimation (Adam) [29] method as the opti-
mizer to train themodel, since it yields faster convergence compared
to SGD. To compare the output predicted distribution q̂u,t with the
ground truth qu,t , we use a Kullback–Leibler (KL) divergence loss
function, shown below:

L(qu,t , q̂u,t) = −
∑
дi ∈G

qu,дi ,t × log
(q̂u,дi ,t
qu,дi ,t

)
(8)

Thus, given a regularization weight Φ and sample size N , the
objective function with regularization for the model is to search for
a choice of Θ (which includes all weights and bias term):

arдmin
Θ

1
N

∑
L(q, q̂) + Φ × ∥Θ∥2F . (9)

Through this step, the optimal predicted taste distribution in the
next state t , q̂u,дi ,t ∀дi ∈ G will be used in the post-ranking stage.

5.2 Post-Ranking Mechanism
As many recommenders are trained in a pairwise manner, many
studies state that one might not be able to include calibration into
the training [41]. Therefore, a standard solution is post-ranking
the predicted list in a post-processing step, which has been widely
used in machine learning approaches [12, 41, 51]. Post-ranking

Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

approaches could be integrated into existing models without re-
training the original model pipeline, bringing great convenience
in practice. Thus, we propose a post-ranking mechanism that cali-
brates the recommendation result based on the learned “next stage”
taste distribution, toward overcoming the taste distortion problem.
This approach is summarized in Algorithm 1.

Algorithm 1: TecRec Post-ranking Mechanism
Input: u , Du, :, q̂, λ, Z , k
Output: Tu ; // Recommendation for u from TecRec

1 Tu ← �;

2 d = arg sort
↘,Z

[
Du,1, Du,2, · · · , Du, |I |

]
;

3 while |Tu | < k do
4 i∗ ←

argmax
i∈d\Tu

(1 − λ) ×
∑

v∈Tu∪{i }

Du,v
|Tu | + 1︸ ︷︷ ︸

accuracy term

− λ × φ
(
q̂,

∑
v∈Tu∪{i }

cv
)

︸ ︷︷ ︸
calibration term

;

5 d← d \ {i∗ };
6 Tu ← Tu ∪ {i∗ } ; // Update current optimal result

7 end
8 return Tu ;

To obtain the calibrated results, TecRec takes as input a user u,
predicted relevance scores Du, :, u’s learned taste distributions q̂
(introduced in 5.1), a trade-off parameter λ, a candidates boundary
Z (introduced below), and a required recommendation length k . To
re-rank the Top-k most relevant items and let users’ taste distribu-
tion q̃TecRec be as close to our learned distribution q̂, we consider
the accuracy and closeness of distributions together for the ranking
optimization. We can obtain the optimized new item list, Tu , for
user u as Algorithm 1 lines 3-6, where λ ∈ [0, 1] is the calibration
weight to control the balance between the original recommendation
results and the distribution metric, and recommendation score Du, :
is provided from any base recommender system. Directly using the
KL-divergence as the calibration function φ(·) to find the optimal
set Tu is a combinatorial optimization problem and NP-hard [41].
Prior research [40] has shown that the greedy optimization of this
problem could be equivalent to the greedy optimization of a surro-
gate submodular function. Hence, we can re-write the calibration
term, φ(·), in Algorithm 1 Line 4 as follows:

φ
(
q̂,

∑
v ∈T∪{i }

cv
)
= KL

(
q̂| |

∑
v ∈Tu∪{i }

cv
)

= −
∑
дk ∈G

q̂дk × log

(∑
v ∈Tu∪{i }

cv,дk

q̂дk

)
= −

(∑
дk ∈G

q̂дk log
∑

v ∈Tu∪{i }
cv,дk −

∑
дk ∈G

q̂дk log q̂дk

)
= Entropy(u)︸ ︷︷ ︸

constant

−
∑
дk ∈G

q̂дk log
∑

v ∈Tu∪{i }
cv,дk

(10)

Therefore, updating the optimized Tu (Line 4) could be equiva-
lent to:

i∗ ← argmax
i ∈d\Tu

(1 − λ) ×
∑

v ∈Tu∪{i }

Du,v

|Tu | + 1

+ λ ×
∑
дk ∈G

q̂дk log
∑

v ∈Tu∪{i }
cv,дk

(11)

where the greedy optimization of submodular functions achieves a
(1 − 1

e) guarantee of optimality (e is Euler’s number) [34].

Top-Z Selection for Post-ranking. To add each item into the cal-
ibrated recommendation results, a traditional post-ranking method
would go through the entire candidate item list, top(u, |I |)with the
size of |I |), then select the one with the most optimal KL-weighted
score. To save running time and maintain prediction quality, for
each iteration to choose the optimal item to add into calibrated
recommendation results, instead of going through the entire list of
top(u, |I |), we only consider the Top-Z items in top(u, |I |), where
Z is also a given hyper-parameter for Algorithm 1. In our experi-
ments, we set Z as 30 times the number of valid genres for G (e.g.,
Z = 540 for |G| = 18 in the MovieLens-1M dataset).

The benefits of only selecting candidates from the Top-Z items in
the top(u,Z) rather than the entire item set are not only significantly
faster processing time (Z ≪ |I|), but also further ensuring recom-
mendation quality. That is, we need not engage our post-ranking
algorithm with items on the bottom of top(u, |I |), although it may
slightly improve KL-divergence.

6 EXPERIMENTS AND RESULTS
In this section, we conduct a series of experiments over the three
datasets introduced in Section 4.1. Our goal is to examine the pro-
posed distribution-aware recommendation in the presence of dy-
namic tastes, to achieve the ultimate goal of simultaneously miti-
gating both the rabbit hole effect and the taste distortion problem.
We focus on two main questions: How well can we mitigate the
taste distortion problem? And what impact does this have on rec-
ommendation?

6.1 Mitigating Taste Distortion
We begin by examining how well TecRec learns the evolving taste
distribution of users. We first discuss hyper-parameter tuning, in
terms of the step size and window size. Then, we analyze the re-
sults of TecRec with special attention to alternative approaches,
including two diversity-focused recommenders (xQuAD and SPAD),
a traditional accuracy-based recommender (BPR), and a popular
sequential recommender system (SASRec).

To better reflect user’s taste distribution in a stage, we employ a
hyper-parameter step size – β – which selects consecutive β movies
as a watching stage. βu = 1 treats every watched movie as an
individual series, which may not sufficiently express a user’s taste
distribution at that time. βu =

∑
i ∈I HR

u,i treats all watched movies
as one single series to reflect the user’s taste distribution (in essence,
the standard assumption in the literature). The objective of tuning
this hyper-parameter is to find an optimal value of step size to
sufficiently express a user’s taste distribution and effectively avoid
the effects of outliers and noise.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

Figure 7: Hyper-parameters tuning for TecRec Distribution
Prediction Component.

6.1.1 Hyper-parameter Tuning. Figure 7 first shows the effects of
step size on the KL-divergence. The result of hyper-parameter tun-
ing suggests the KL-divergence firstly decreases with the growth
of step size β . After a minimal value (β = 4 for ML-1M and Movi-
eTweets and β = 8 for ML-20M), KL-divergence sharply increases.
Too small step size brings more outliers and noise into the training
and may not represent a user’s taste at a certain stage. Conversely,
too large step size would flatten the taste preference and may not
have a strong ability to express the shift from one genre to another.

We also tune another hyper-parameter of the model – window
size (z, or lag value). Unlike the step size, which is to determine the
number of movies in each window (stage), window size determines
how many prior windows (stages) should be used for prediction.
Recall our TecRec is a many-to-one recurrent model, which utilizes
previous taste preference sequence – [pt−z ,pt−z+1, ...,pt−1] – as
the inputs to predict the taste distribution in the next stage q̂t .
Figure 7 also shows the effects of window size on the KL-divergence.
Similar to the step size, a too-small window size indicates there is no
overlap in the training set, then it would be equivalent to not using
a time relationship between elements of the training set of taste
sequence. However, due to the limited number of user interactions,
a too-large window size indicates we have to lose many cold users
in the training set, which would also harm the model’s training
performance. In the following, we set the window size z = 3 for
ML-20M andMovieTweets dataset, and set z = 7 for ML-1M dataset;
and we set the step size β = 4 for ML-1M and MovieTweets and
β = 8 for ML-20M, based on the tuning results.

6.1.2 Comparison with Alternatives. To compare the learning per-
formance of TecRec for predicting a user’s taste distribution, we
choose the three variants of the recurrent unit (TRU, GRU, and
LSTM-unit) for TecRec and six competitor methods: two widely-
used assumptions (allTrain and lastTrain), an accuracy-driven rec-
ommender (BPR), a sequential recommender (SASRec), and two
diversity-focused recommenders (xQuAD and SPAD), briefly intro-
duced as below:

• allTrain: this widely-used method assumes taste distribu-
tion should be the same as the historical distribution in the
training set;
• lastTrain: this method assumes the taste distribution in the
next observed window should be similar to the latest time
window in the training set;
• BPR: a traditional accuracy-driven recommender with a
generic optimization criterion for optimal personalized rank-
ing [37];
• SASRec: a popular sequential recommender using a two-
layer Transformer decoder to capture user’s sequential be-
haviors and achieving state-of-the-art results [25];
• xQuAD: a diversity-focused recommender proposed in [44]
adapted from the Query Aspect Diversification framework
[38], where user u’s preferences are formulated as a proba-
bility distribution over aspects (i.e., genres);
• SPAD: a variant of xQuAD proposed in [26], which uses the
same objective function and greedy post-ranking approach
as xQuAD, but uses sub-profiles as aspects to model the
user’s interests rather than item features.

Since the ground truth in the next window has a fixed size (i.e.,
β), for the two diversity-focused recommenders and the sequen-
tial recommender, we measure the taste distribution from their
Top-10 recommended results, i.e., q̃Top−10xQuAD, q̃

Top−10
SPAD , q̃Top−10BPR , and

q̃Top−10SASRec. Recall that these methods aim for diversity or to better
capture a user’s dynamic shifts in preference; however, they are
not designed with recommendation distribution in mind, so the
resulting recommendations will not respect the requirements of
taste distribution.

Figure 8 shows the results for dynamically learning and predict-
ing users’ taste distribution in the testing set for all three datasets.
In terms of KL-divergence between the true taste distributions and
the predicted ones, TecRec-LSTM performs the best among all base-
line methods. First of all, for the intra-comparison of the baselines,
lastTrain performs worse than allTrain and most others, which
indicates users may not always follow the latest taste in the next
watching stage. TecRec-LSTM improves over 30%+ from allTrain
and over 40%+ from lastTrain on all datasets. Secondly, traditional
diversity-focused recommenders, xQuAD and SPAD, performworse
than the baseline allTrain, which indicates that these methods may
improve the latent diversity of the recommendation results; how-
ever, they do not follow the distribution-sensitive requirements of
distribution-aware recommendation. Similar results hold for BPR
and the sequential recommender SASRec. Thirdly, the time-series-
based neural network models with three types of recurrent units
obtain significantly better results than the others, which suggests
that the pattern of taste shifts could be recognized and learned by

Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 8: Dynamic taste distribution prediction results.

Figure 9: KL-divergence between the true distribution qwith
q̃Top−kCaliRec and q̃Top−kTecRec on all calibration trade-off settings.

these models. Of the three variants of TecRec, the one with LSTM-
unit results in the best prediction results (and so will be used in the
discussions in Section 6.2), though the particular choice appears
not to be critical.

6.1.3 Calibration Trade-off λ. Recall that we can control the degree
of calibration with λ, a “customized” knob to control the influence
of calibration which is widely used (e.g., [12, 41, 54]). With a choice
of λ = 0, we default to the baseline recommender (e.g., BPR). Figure
9 shows the impact of calibration on both CaliRec and the proposed
TecRec in terms of the KL-divergence between the true taste dis-
tribution and the taste distribution of final recommended items.
Solid lines correspond to CaliRec, and dashed lines for TecRec. As
we can see, comparing with the results from CaliRec, the results
by our proposed methods have significantly lower KL-divergence
on each calibration-weight settings. One of the interesting obser-
vations from the three solid lines is, in both the BPR (λ = 0) and
CaliRec (λ > 0) results, a larger K is often accompanied by a better
KL-divergence (meaning less taste distortion). This may indicate
that recommendation accuracy would be worse with a smaller K
(recall that a wrongly assumed taste distribution would result in
worse recommendation accuracy), which we will validate below.
We also observe that the improvement from CaliRec is more im-
pressive when K is small, e.g., K = 5. For example, when λ = 0.5,
the KL@5 is improved 37.7% (from 2.23 to 1.39), which is more than
the improvement of KL@10 (24.1%) and KL@15 (15.9%). Besides,
we also observe that the KL-divergence could not be 0 due to the
predicted error of taste distribution and the Top-Z selection mech-
anism, even if we set a large calibration weight, e.g., λ = 0.99. Up

to now, TecRec shows the effectiveness and robustness to simulta-
neously ameliorate both the rabbit hole effect and taste distortion.
However, what impact does TecRec have on recommendation?

6.2 Improving Recommendation
Our previous experiments demonstrate the viability of mitigat-
ing the taste distortion problem by predicted a distribution that
is close to the real taste distribution, compared with two widely-
used assumptions (allTrain and lastTrain), an accuracy-driven rec-
ommender (BPR), a sequential recommender (SASRec), and two
diversity-focused recommenders (xQuAD and SPAD). Next, we ex-
plore the impact on recommendation results using this predicted dis-
tribution. We consider two variants of the proposed Taste-enhanced
calibrated Recommender based on the two accuracy-driven recom-
menders: BPR and SASRec.Recall that the TecRec post-ranking
component can be adapted to the recommendation results of
any base recommender without re-training.

For fair comparison, we consider the first stage – which contains
β (step size, β = 4 for ML-1M and Movie-Tweetings dataset and β =
8 for ML-20M dataset) movies – in the test set as the ground truth.
Since the length of ground truth data is fixed, we use Recall@K
and NDCG@K as the evaluation metrics.

Table 2 first shows the recommendation results on the ML-1M
dataset (the other two datasets present similar observations and
results) comparing with CaliRec for different settings of the calibra-
tion weight and the two base recommenders (BPR and SASRec). Col-
umn ∆CaliRec presents our improvement rate of recommendation
performance from CaliRec. On the one hand, TecRec obtains better
results (Recall@K and NDCG@K) than the traditional CaliRec al-
gorithm. For example, when we set the calibration weight λ = 0.75,
Recall@10 improves 59.7% from BPR + CaliRec and 42.0% from
SASRec + CaliRec settings, respectively. This improvement indi-
cates that a reasonable estimation of users’ taste distribution would
provide not only a more reasonable recommender list but also more
accurate results.

Table 2 also shows the comparison of the recommendation re-
sults between the proposed TecRec with BPR and SASRec (refer to
Column ∆Base). The Recall@K and NDCG@K improves in most
of the calibration-weight settings (except λ = 0.99), e.g., when we
set the calibration weight λ = 0.5, Recall@10 improves 10.5% from
BPR and 4.3% from SASRec, respectively. Firstly, this improvement
shows that there is not necessarily a trade-off between the distribu-
tion adjustment and accurate recommendation. A better estimation
of taste distribution will produce more accurate recommendation

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

Recall@10 NDCG@10
+ CaliRec + TecRec ∆Base ∆CaliRec + CaliRec + TecRec ∆Base ∆CaliRec

BP
R

λ =0 0.1182 0.1182 0.1975 0.1975
λ =0.25 0.1166 0.1244 +5.25% +6.69% 0.1939 0.2053 +3.95% +5.88%
λ =0.5 0.1106 0.1306 +10.49% +18.08% 0.1827 0.2198 +11.29% +20.31%
λ =0.75 0.0858 0.1370 +15.91% +59.67% 0.1687 0.2103 +6.48% +24.66%
λ =0.99 0.0264 0.0887 -24.96% +235.98% 0.1274 0.1763 -10.73% +38.38%

SA
SR

ec

λ =0 0.1396 0.1396 0.2368 0.2368
λ =0.25 0.1284 0.1426 +2.15% +11.06% 0.2252 0.2421 +2.25% +7.51%
λ =0.5 0.1172 0.1456 +4.30% +24.18% 0.2124 0.2527 +6.73% +18.99%
λ =0.75 0.1027 0.1458 +4.44% +41.97% 0.1912 0.2468 +4.25% +29.11%
λ =0.99 0.0610 0.1033 -26.00% +69.34% 0.1077 0.1718 -27.44% +59.55%

Table 2: Recommendation results, Recall@10 and NDCG@10 on ML-1M dataset by setting different calibration weights.
Columns ∆Base shows the improvement of our proposed TecRec from two basis recommenders, BPR and SASRec. And ∆CaliRec
shows the improvement from CaliRec.

results. Secondly, the recommendation results improve by differ-
ent amounts for different base methods (e.g., ∆BPR = 10.5% v.s.
∆SASRec = 4.3%). One possible reason for the larger improvements
of BPR + TecRec over BPR is TecRec’s inherent consideration of
sequence (which is absent from BPR). In contrast, the improvement
over SASRec is smaller, possibly since sequence is already part of
that method. Note however that conventional sequential recom-
menders are still limited in addressing “taste distortion”, which uses
explicit categories as the preference rule (refer to Figure 8). Third,
comparing the results with the oracle results (refer to Figure 5),
there is still much room for improvement by better estimating the
taste distribution.

Besides, for evaluating the recommendation results in all aspects,
we also display the Recall@K and NDCG@K comparing TecRec
with CaliRec with the same base – SASRec – on Figure 10. For each
setting of K , TecRec performs better than CaliRec for all settings
of calibration trade-off, λ, and performs even better than SASRec
for most settings of λ (excepts λ = 0.99). More specifically, with
the growth of K , the improvement from the CaliRec increases more
quickly (refer to Figure 10). For example, when we set λ = 0.75 on
the ML-1M dataset, comparing with the 34.6% improvement from
SASRec + CaliRec on Recall@5 results, the improvement increases
to 42.0% and 43.4% on Recall@10 and Recall@15 recommendations,
respectively. However, on the contrary, this improvement from the
base recommender only increases more slowly. For example, when
λ = 0.75, comparing with the 4.59% improvement from SASRec on
Recall@5 results, the improvement drops to 4.44% and 3.40% on
Recall@10 and Recall@15 recommendations, respectively. Similar
observations and results are presented on NDCG@K . One expla-
nation is traditional methods provide less taste distortion when K
is larger (recall Figure 9). Another explanation is that every user’s
testing data has been set to only the next stage with β movies.
Therefore, the positive effect from the predicted taste distribution
could be tapering off. This observation also motivates our continued
research: how can we accurately predict users’ taste distribution
for the next few stages, rather than just one?

Figure 10: Recommendation results comparison: CaliRec
and TecRec with the same base SASRec on ML-1M dataset.

7 CONCLUSION AND FUTUREWORK
In this paper, we first identified the taste distortion problem, and
empirically showed the prevalence of this problem through a data-
driven study. Then, we proposed a Taste-enhanced calibrated Rec-
ommender (TecRec) that incorporates a time-series neural network
sub-model to predict users’ preference shifts. Results show TecRec
improves both taste distribution estimation (i.e., mitigating both
the rabbit hole effect and the taste distortion problem) and recom-
mendation quality, compared with traditional distribution-aware

Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

recommenders, as well as diversity-focused and sequential recom-
menders. Besides, the proposed recommender offers interpretable
taste distribution (by respecting a user’s existing preferences), and
can be integrated into existing recommenders without re-training
the original recommendation pipeline.

Motivated by the “oracle” results, we observed considerable room
to improve the recommendation results using a better estimation of
taste distribution. In our future work, we would like to introduce a
more advanced time-series model to study users’ taste distribution.
Also, we plan to propose an end-to-end recommender that could
monitor and detect in real-time the distribution shifts and calibrate
it during the recommendation process. Another direction is to
incorporate cyclical patterns of user preferences. For example, a
user’s preference for fashion may change over the course of a year,
but return to Christmas styles during the holiday season. Hence,
we need not only more extended memory of the prediction model,
but also a more accurate and self-controlled timing slice and more
flexible learning mechanism.

REFERENCES
[1] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.

2019. The unfairness of popularity bias in recommendation. arXiv preprint
arXiv:1907.13286 (2019).

[2] Titipat Achakulvisut, Daniel E Acuna, Tulakan Ruangrong, and Konrad Kording.
2016. Science Concierge: A fast content-based recommendation system for
scientific publications. PloS one 11, 7 (2016).

[3] Azin Ashkan, Branislav Kveton, Shlomo Berkovsky, and Zheng Wen. 2014. Di-
versified Utility Maximization for Recommendations.. In RecSys Posters.

[4] Aditya Bhaskara, Mehrdad Ghadiri, Vahab Mirrokni, and Ola Svensson. 2016.
Linear relaxations for finding diverse elements in metric spaces. In Advances in
Neural Information Processing Systems. 4098–4106.

[5] Chih-Ming Chen,Ming-Feng Tsai, Yu-Ching Lin, and Yi-Hsuan Yang. 2016. Query-
based music recommendations via preference embedding. In Proceedings of the
10th ACM Conference on Recommender Systems. 79–82.

[6] Laming Chen, Guoxin Zhang, and Hanning Zhou. 2017. Improving the diver-
sity of top-N recommendation via determinantal point process. In Large Scale
Recommendation Systems Workshop.

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[8] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval. 659–
666.

[9] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential user-based
recurrent neural network recommendations. In Proceedings of the Eleventh ACM
Conference on Recommender Systems. 152–160.

[10] Simon Dooms, Toon De Pessemier, and Luc Martens. 2013. Movietweetings: a
movie rating dataset collected from twitter. InWorkshop on Crowdsourcing and
human computation for recommender systems, CrowdRec at RecSys, Vol. 2013. 43.

[11] Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179–211.

[12] Dean P Foster and Rakesh V Vohra. 1998. Asymptotic calibration. Biometrika 85,
2 (1998), 379–390.

[13] Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. 2016. Bayesian low-rank
determinantal point processes. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 349–356.

[14] Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. 2002. Applying LSTM to
time series predictable through time-window approaches. In Neural Nets WIRN
Vietri-01. Springer, 193–200.

[15] Felix A Gers and E Schmidhuber. 2001. LSTM recurrent networks learn sim-
ple context-free and context-sensitive languages. IEEE Transactions on Neural
Networks 12, 6 (2001), 1333–1340.

[16] Felix A Gers and Jürgen Schmidhuber. 2000. Recurrent nets that time and count.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for
the New Millennium, Vol. 3. IEEE, 189–194.

[17] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

[18] Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in
supervised learning. In Advances in neural information processing systems. 3315–
3323.

[19] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2016),
19.

[20] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 191–200.

[21] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 843–852.

[22] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[23] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[24] Neil Hurley andMi Zhang. 2011. Novelty and diversity in top-n recommendation–
analysis and evaluation. ACM Transactions on Internet Technology (TOIT) 10, 4
(2011), 14.

[25] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[26] Mesut Kaya and Derek Bridge. 2018. Accurate and diverse recommendations
using item-based subprofiles. In The Thirty-First International Flairs Conference.

[27] Mesut Kaya and Derek Bridge. 2019. A comparison of calibrated and intent-aware
recommendations. In Proceedings of the 13th ACM Conference on Recommender
Systems. ACM, 151–159.

[28] Mesut Kaya and Derek Bridge. 2019. Subprofile-aware diversification of recom-
mendations. User Modeling and User-Adapted Interaction 29, 3 (2019), 661–700.

[29] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[30] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent
trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807
(2016).

[31] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[32] Weiwen Liu, Jun Guo, Nasim Sonboli, Robin Burke, and Shengyu Zhang. 2019.
Personalized fairness-aware re-ranking for microlending. In Proceedings of the
13th ACM Conference on Recommender Systems. ACM, 467–471.

[33] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu.
2020. Disentangled Self-Supervision in Sequential Recommenders. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 483–491.

[34] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functions—I. Mathematical
programming 14, 1 (1978), 265–294.

[35] Derek O’Callaghan, Derek Greene, Maura Conway, Joe Carthy, and Pádraig
Cunningham. 2015. Down the (white) rabbit hole: The extreme right and online
recommender systems. Social Science Computer Review 33, 4 (2015), 459–478.

[36] Alexander M Petersen, Woo-Sung Jung, Jae-Suk Yang, and H Eugene Stanley.
2011. Quantitative and empirical demonstration of the Matthew effect in a study
of career longevity. Proceedings of the National Academy of Sciences 108, 1 (2011),
18–23.

[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[38] Rodrygo LT Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting query
reformulations for web search result diversification. In Proceedings of the 19th
international conference on World wide web. 881–890.

[39] Rodrygo LT Santos, CraigMacdonald, and IadhOunis. 2012. On the role of novelty
for search result diversification. Information retrieval 15, 5 (2012), 478–502.

[40] Yusuke Shinohara. 2014. A submodular optimization approach to sentence set
selection. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 4112–4115.

[41] Harald Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM
conference on recommender systems. ACM, 154–162.

[42] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[43] Virginia Tsintzou, Evaggelia Pitoura, and Panayiotis Tsaparas. 2018. Bias disparity
in recommendation systems. arXiv preprint arXiv:1811.01461 (2018).

[44] Saúl Vargas. 2015. Novelty and diversity evaluation and enhancement in recom-
mender systems. Ph.D. Dissertation. Ph. D. Dissertation. Universidad Autónoma

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xing Zhao, Ziwei Zhu, and James Caverlee

de Madrid.
[45] Saul Vargas, Pablo Castells, and David Vallet. 2011. Intent-oriented diversity

in recommender systems. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. 1211–1212.

[46] Jacek Wasilewski and Neil Hurley. 2016. Intent-aware diversification using a
constrained PLSA. In Proceedings of the 10th ACM Conference on Recommender
Systems. 39–42.

[47] Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro.
2017. Learning non-discriminatory predictors. arXiv preprint arXiv:1702.06081
(2017).

[48] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the tenth ACM international
conference on web search and data mining. 495–503.

[49] Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao
Xu, and Yilin Xiong. 2020. Future data helps training: Modeling future contexts
for session-based recommendation. In Proceedings of The Web Conference 2020.
303–313.

[50] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A simple convolutional generative network for next item
recommendation. In Proceedings of the Twelfth ACM International Conference on

Web Search and Data Mining. 582–590.
[51] Bianca Zadrozny and Charles Elkan. 2001. Obtaining calibrated probability

estimates from decision trees and naive Bayesian classifiers. In Icml, Vol. 1.
Citeseer, 609–616.

[52] ChengXiang Zhai, William W Cohen, and John Lafferty. 2015. Beyond indepen-
dent relevance: methods and evaluation metrics for subtopic retrieval. In ACM
SIGIR Forum, Vol. 49. ACM New York, NY, USA, 2–9.

[53] Xing Zhao, Ziwei Zhu, Majid Alfifi, and James Caverlee. 2020. Addressing the
Target Customer Distortion Problem in Recommender Systems. In Proceedings of
The Web Conference 2020. 2969–2975.

[54] Xing Zhao, Ziwei Zhu, Yin Zhang, and James Caverlee. 2020. Improving the
Estimation of Tail Ratings in Recommender System with Multi-Latent Represen-
tations. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 762–770.

[55] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based
recommendation. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM, 1153–1162.

[56] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. ACM, 22–32.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Distribution-aware Recommendation
	2.2 Diversity-focused Approaches
	2.3 Sequential Recommendation

	3 Preliminaries
	4 A Data-driven Study of Taste Distortion
	4.1 Datasets and Setup
	4.2 Taste Distortion in Recommendation
	4.3 An Example of Taste Distortion
	4.4 ``Oracle'' CaliRec with True Distribution

	5 Taste-Enhanced Calibrated Recommendation
	5.1 Learning Taste Distribution
	5.2 Post-Ranking Mechanism

	6 Experiments and Results
	6.1 Mitigating Taste Distortion
	6.2 Improving Recommendation

	7 Conclusion and Future Work
	References

