
December 2019     THE  LEADING EDGE      923

Seismic compressive sensing by generative inpainting 
network: Toward an optimized acquisition survey

Abstract
The use of deep learning models as priors for compressive 

sensing tasks presents new potential for inexpensive seismic data 
acquisition. Conventional recovery usually suffers from undesired 
artifacts, such as oversmoothing, and high computational cost. 
Generative adversarial networks (GANs) offer promising alterna-
tive approaches that can improve quality and reveal finer details. 
An appropriately designed Wasserstein GAN trained on several 
historical surveys and capable of learning the statistical properties 
of the seismic wavelet’s architecture is proposed. The efficiency 
and precision of this model at compressive sensing are validated 
in three steps. First, the existence of a sparse representation with 
different compression rates for seismic surveys is studied. Then, 
nonuniform samplings are studied using the proposed methodol-
ogy. Finally, a recommendation is proposed for a nonuniform 
seismic survey grid based on the evaluation of reconstructed 
seismic images and metrics. The primary goal of the proposed 
deep learning model is to provide the foundations of an optimal 
design for seismic acquisition without a loss in imaging quality. 
Along these lines, a compressive sensing design of a nonuniform 
grid over an asset in Gulf of Mexico, versus a traditional seismic 
survey grid that collects data uniformly every few feet, is suggested, 
leveraging the proposed method.

Introduction
Compressive sensing (CS) (Candes et al., 2006; Donoho, 

2006) provides methods that allow economic sampling from 
a sparse and compressible signal at acquisition time so that 
reconstruction of the data into dense regular intervals is plau-
sible with sufficient confidence. As such, CS has significant 
potential to provide efficient seismic acquisition and imaging 
schemes. For example, when applied in the acquisition of 
seismic data in four spatial dimensions, CS can reduce the 
number of required geophone or hydrophone channels by a 
certain compression ratio toward each dimension under uniform 
or nonuniform sampling. Compared to a conventional survey 
design, CS offers significant advantages such as acquiring a 
survey faster and at lower cost and reconstructing the signals 
to an equivalent dense level later on, acquiring a much larger 
survey within similar timeline and budget, or designing 
extremely high-quality surveys at the same price. 

We propose a framework that utilizes the power of generative 
adversarial networks (GANs) to model a manifold of seismic 
images from historical surveys. We use this GANs-based model 
to perform information recovery from sparse arrays. 
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Related works
The goal of image recovery is to reconstruct an image from its 

compressed peer. Two of the main application domains of image 
recovery are superresolution and inpainting. Superresolution aims at 
filling in the missing pixels in a low-resolution image, creating 
high-resolution uncompressed images, but it can only be combined 
with uniform sampling (Ledig et al., 2017; Wang et al., 2018). Pixel 
inpainting, on the other hand, can handle both uniform and non-
uniform sampling scenarios by representing the nominal sampling 
scheme as arbitrary masks. In this work, we focus on the latter domain.

Conventional inpainting methods generally solve an interpola-
tion problem using smooth function extensions, such as biharmonic 
interpolation (Damelin and Hoang, 2018) and Laplacian interpola-
tion (Li et al., 2012). Both use regularized iterative reconstruction 
based on a predefined sparsity transform, which usually includes 
time-consuming iterative optimization and may result in undesired 
artifacts such as oversmoothing. Also, most of these methods 
suffer from image size limitations, high computational cost, and 
lack of refining details.

The use of deep generative models as priors for CS offers a 
promising alternative algorithmic approach for inexpensive seismic 
data acquisition. Deep generative models have been found to 
demonstrate superior performance at image retrieval tasks, improv-
ing quality and revealing finer details, compared to conventional 
approaches or pixel-wise deep learning models. The Wasserstein 
GAN (WGAN) (Arjovsky et al., 2017) is a well-known archi-
tecture that uses the Wasserstein distance to measure the distance 
between the data distribution learned by the generator and the 
actual data distrubution. The WGANs gradient penalty 
(WGANs-GP) loss function (Gulrajani et al., 2017) uses gradient 
penalty to additionally clip the weights of the discriminator. It 
succesfully addresses common problems observed in general GANs, 
such as unstable training caused by vanishing gradient or limited 
diversity of generated samples caused by mode collapse. 

The generative inpainting network with contextual attention 
(GIN) (Yu et al., 2018) is a network that combines, and outper-
forms, several state-of-the-art approaches, including context 
encoders (Pathak et al., 2016), dilated convolutions of inpainting 
(Iizuka et al., 2017), and the aforementioned WGANs-GP. More 
importantly, this contextual-attention-based architecture, does 
not fuel its learning only from the known pixels surrounding the 
masked image area; it also looks for useful patches from other 
known image locations. For these reasons, we select the contextual-
attention-based network as the basis for our seismic image com-
pression method.
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Although there have been attempts recently at applying deep 
learning methods to solve seismic image compression problems, 
such as superresolution by GAN (Lu et al., 2018; Picetti et al., 
2018) or denoising and interpolation by autoencoder and recon-
struction by GAN (Mandelli et al., 2019), none uses a pixel 
inpainting GAN applied on large amounts of real seismic data. 

Goal of research 
In 3D spaces, towed-streamer seismic data are usually acquired 

in subline directions (Figure 1). Two-dimensional sampling can 
be applied on both inline and crossline directions. The goal of 

this research is twofold. First, we use the state-of-the-art 2D 
generative inpainting network for sampled data reconstruction. 
Second, we explore the design of an optimal nonuniform sampling 
strategy, based on historical information. The following points 
describe our main contributions:

1)	 introduction of a GIN pixel inpainting model suitable for 
compressed seismic image recovery problems, under uniform 
or nonuniform sampling, capable of recovering the heavily 
sampled data efficiently and reliably; 

2)	 superior model for CS (GIN-CS) on uniform sampling, that 
performs better than the original GIN and the state-of-the-art 
interpolation method for uniform sampling;

3)	 introduction of an effective nonuniform sampling survey 
recommendation, leveraging the GIN uniform sampling 
reconstructions and a hierarchical selection scheme. 

As mentioned, we will apply our model for seismic image 
recovery when missing traces occupy a large portion of the image. 
In the following sections, we define the CS problem and describe 
the model design.

Sampling setting 
Seismic image compression aims at efficient sparse representa-

tions of the signals. Provided a sampled signal and known sampling 
locations, a high-resolution image can be reconstructed with 
acceptable recovery loss. The sampling positions are indicated by 
binary masks (m) where 1 stands for missing, unknown pixels, 
and 0 stands for known pixels, as seen in Figure 2. 

Compression rate (CR) is often used to describe the compres-
sion factor. It is defined as the proportion between uncompressed 
and compressed data size

CR = uncompressed data size
compressed data size .                    (1)

CR is always larger than 1 when 
compressive sampling is applied. A 
higher CR value indicates more signal 
values are missing in the compressed 
image, thus potentially more challenging 
signal reconstruction. The CR value 
applies for both uniform and nonuniform 
sampling. As the bottom row in Figure 2 
shows, nonuniform sampling may be 
regarded as the trace-wise shuffling of 
the missing traces arrangement in the 
uniform sampling under the same CR.

Bin width b defines the largest 
number of connected missing traces in 
a complete sampling survey, i.e., the 
maximum width of connected white 
areas in Figure 2. Bin width is crucial 
for pixel inpainting in nonuniform 
sampling because it indicates the largest 
gap that a model is required to fill. For 
a fixed value of b, the largest CR an 

Figure 1. Compressive sampling in 3D space. 2D sampling can be applied on both 
inline and crossline images. The color bar shows the data range of the seismic 
image, normalized to –1 to 1.

Figure 2. Examples of sampling binary masks for (a) uniform and (b) nonuniform sampling. For each of the 
256 × 256 images, white areas indicate missing traces, and black areas indicate known traces. The compression 
rates, from left to right columns, are set to 2, 4, and 8, respectively.
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image could have is W / (1 + b), where W denotes the total number 
of traces. 

Problem statement 
The problem of compressed image recovery can be stated as 

a missing pixel inpainting problem. Given an incomplete image  
!!x, how do we fill the missing trace values corresponding to the 
binary mask m?

Using historical images of the uncompressed data set, we train 
a data-driven deep learning model utilizing the raw image (x) as 
ground truth and the binary mask to indicate the locations of the 
missing pixels. Recall that here we use 1 for unknown and 0 for 
known pixel locations. The predicted image output is denoted as !x = f x,m( ):

!x = f x,m( ) .                                  (2) 

Once the network has been trained, we can test the model’s 
performance on any incomplete image !!x  from a different data set.

The main challenges in using an inpainting model to solve 
the seismic image sampling problems are:

1)	 Seismic images have significantly different statistical charac-
teristics, such as texture-based patterns and a wide range of 
frequencies, compared to natural images. 

2)	 The largest number of unknown pixels is only one-fourth of 
the full image size in the original inpainting network applica-
tion, whereas the size of the unknown area in our task covers 
at least one-half of the image, in the CR = 2 case. 

3)	 In our task, the known regions in the sampled image are 
sparsely distributed, contrary to the compact known regions 
addressed in the general inpainting problems. 

We will address these problems by modifying the original 
network and employing it on different experiments.

Methodology 
The GIN (Yu et al., 2018) is a feed-forward GAN with a 

contextual attention layer for missing pixel inpainting. Its archi-
tecture is composed by a coarse network and a refinement network, 
as seen in Figure 3. The coarse network fills in the missing pixels 
by dilated convolutions, as it only trains with the reconstruction 
loss to estimate a coarse pixel filling. The L1 reconstruction loss 
is defined as 

Lreconst !x( ) =  α1

x − !x( )⊙ 1−m( )
l

N0 1−m( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.               (3)

Here, the masked image to be inpainted is described by x⊙ 1−m( ).   
N0  denotes the total number of zero values in the matrix, e.g., 
N0 (1 – m) meaning number of unknown pixels, while α1 is the 
L1 loss penalty. 

The refinement network applies contextual attention in parallel 
with dilated convolutions to enforce further detail consistency 
between the generated results and the ground truth images. Three 
strategies guide this refinement: 

1)	 Decoupling global and foreground loss. The global loss term 
focuses at the differences between the whole ground truth 
and predicted images x, !x( ), whereas the foreground term 
only considers differences in the missing regions 
x⊙ 1−m( ), !x⊙ 1−m( )( ) . The generator G x, !x( )  learns to 

create faithfully reconstruced images, guided by the differ-
ences between reconstructions and ground truth. At the same 
time, the discriminator D x, !x( ) constantly improves its ability 
to separate reconstructed images from images sampled directly 
from the data. Their loss functions are

LG = L G x, !x( ){ }+ L G x⊙ 1−m( ), !x⊙ 1−m( )( )  { }      (4) 

Figure 3. GIN architecture. A coarse network recovers the general features for the missing traces, followed by a refinement network that further reconstructs the finer 
structure. The ground truth and generated images are denoted by green and red frames, respectively. Foreground locations correspond to the unknown regions, while 
background locations are the known regions shaded as gray. Together, the two complete the whole image. (Seismic data courtesy of TGS)
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and

LD = L D x, !x( ){ }+ L D x⊙ 1−m( ), !x⊙ 1−m( )( )  { } . (5)

2)	 Training with reconstruction loss concatenated with 
WGANs-GP adversarial loss. The WGANs-GP performs 
better than a general GIN in terms of vanishing gradient and 
mode collapse. The gradient penalty is defined as

P x,   !x( ) = !x − x̂
!x − x̂

2 2

  −1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

,                   (6) 

where x̂  correspond to random points between the straight 
lines connecting x and !x = f x,m( ). Since we use this to measure the 
distance between model distribution and read distribution, 
we replace the previous discriminator loss in equation 5 with 
the following term:

LD = L D x, !x( ){ }+ L D x⊙ 1−m( ), !x⊙ 1−m( )( )  { }
+λGPLGP P x, !x( ) + P x⊙ 1−m( ), !x⊙ 1−m( )( )( ) .    (7) 

3)	 Contextual attention layer. This layer aims at matching the 
foreground (unknown regions) and background (known 
regions) pixels. Compared to traditional convolutional neural 
networks, which are only able to learn the nearby patches at 
the same scale, the contextual attention attempts to learn the 
exact locations where background patches are used to generate 
unknown patches, no matter how far off. As Figure 3 illus-
trates, the background pixels are first extracted in 3 × 3 
patches and then transformed into convolutional filters. The 
similarity of the foreground patch fx,y centered at pixel pi 
location (x, y) and the background patch bx',y' centered at (x',y' ) 
is measured by the normalized inner product, scaled by 
channel-wise softmax

sx , y , ′x , ′y = softmax ′x , ′y λ
f x , y
f x , y

,
b ′x , ′y

b ′x , ′y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ,               (8) 

where

softmax  pi( ) = e pi

j=1

K∑ e p j
 for i = 1 … K,         (9)

with K denoting the total number of pixels and λ being a 
constant. The final contextual attention layer is deconvoluted 
using background patches bx',y' as filters. The network can 
handle images with arbitrary resolutions since the contextual 
layer is fully convolutional and differentiable.

In our generative inpainting network for compressive sensing 
(GIN-CS), we replace the single bounding boxes used in the 
incomplete image generation with predefined binary masks. On 

one hand, a binary mask could be regarded as the combination 
of nonadjacent bounding boxes so that the multiple edges would 
lose the continuity of original spatial relations. On the other hand, 
the maximum width of connected missing traces we used is not 
larger than 16, so the edge effect would be ignored over the global 
image size. We should note that the original architecture uses 
spatially discounted reconstruction loss to reduce the edge effects 
in unknown pixel bounding boxes; however, due to the aforemen-
tioned difference in the shapes of our masks, we do not apply such 
a spatial discounting.

Measurement metrics
To assess the seismic image reconstruction performance, we 

use the mean squared error (MSE) and the peak signal-to-noise 
ratio (PSNR). For PSNR, a higher value implies better reconstruc-
tion quality, while the opposite holds for the MSE metric. We 
also adopt the structural similarity (SSIM) index (Wang et al., 
2004) to describe the perceptual performance. The SSIM index 
varies from –1 to 1 with higher values implying that the structural 
similarity is better preserved.

Experimental setup 
Data set description. The seismic data set we use in our experi-

ments has been collected from the Gulf of Mexico (GoM), courtesy 
of TGS. It is characterized by different types of noise, such as 
constructional noise, and low-quality amplitude estimations under 
the huge salt bodies that cover most of the region, which makes 
recovery from sampled inputs challenging. We used a small portion 
of an internal offshore data set to train the network, and then the 
model was tested on the GoM data set. The two seismic data sets 
are characterized by substantially similar frequency content, 
intensities distribution, and geologic patterns. This allows us to 
explore the robustness of the generative inpainting models by 
training and testing on different data sets.

To analyze the seismic data in the form of an RGB image, 
we have clipped the original data values in the range of [–δ, δ], 
where δ is the standard deviation of all the reflection amplitude 
values in the whole data set. Then, we rescale the values to the 
[–1, 1] range and apply the Matplotlib standard seismic color map 
as seen in Figure 1. These preprocessing steps aim only at improving 
the intensity contrast of the seismic images so that the feature 
patterns can be more effectively captured and learned by the 
convolutional filters.

Parameters. For training, we cropped 5000 of the processed 
offshore seismic images into 256 × 256 pixels and mixed the inline 
and crossline cases. The image size is selected based on the trade-off 
between working station storage capacity (16 GB) and training 
speed. Running 50 training epochs takes approximately 10 hours. 
The main parameters are shown in Table 1.

As mentioned in the Methodology section, there are two ways 
to arrange the training masks: random single bounding boxes, as 
in the original GIN, or predefined binary sampling masks, as in 
our modified GIN-CS. For testing, both methods use binary masks. 

To investigate the influence of different training masks on 
both uniform and nonuniform sampling, we exploit six training 
mask types:
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•	 uniform sampling binary masks at 
four different compression rates, 
namely CR = 2, 4, 8, 16;

•	 random single bounding boxes 
with heights equal to image height 
(256 pixels) and largest bin width 
b = 8, 16 pixels.

Discussions on pretrain weights. We 
further investigate the influence of using 
pretrained GANs weights by training 
on the same set for 150 epochs using 
two different initialization schemes — 
one random and the other with weights 
pretrained on ImageNet (Deng et al., 
2009). The PSNR/SSIM values we 
observed were 14.4 dB/0.33 for the 
ImageNet pretrained case and 
25.8 db/0.91 for the random initialization. This indicates that 
transfer learning on seismic image data sets may not necessarily 
be beneficial to the overall training, contrary to what is often 
observed with natural images. This observation does not come as 
a complete surprise since seismic images share few similarities 
with the natural ImageNet images in terms of the statistical 
properties of their intensity distributions. So, when the number 
of seismic images in the training data set is much smaller than the 
number of samples in the ImageNet database, the network seems 
to have difficulty effectively adapting. At least, this may be implied 
by the observed performance differences in which a significant 
performance increase is evident when training from scratch, apply-
ing random weights. Further investigation is required to reach a 
clear determination on this, which is part of our ongoing research.

Experiments on uniform sampling 
Reconstruction by GIN-CS. First, we design an experiment 

to discover the relationship between CR in the training scheme 
and in testing samples. Four networks are independently trained 
using different CRs (CR = 2, 4, 8, 16) of the uniform binary 
GIN-CS masks. The evaluation results of these 16 scenarios on 
100 images are shown in Figure 4. The charts imply that models 
trained under smaller CR (e.g., CR = 2) are more sensitive to 
testing CR as they show larger variations in the trace amplitudes. 
Furthermore, a higher CR training scheme does not seem to lead 
to better reconstruction when the testing CR is smaller. This 
implies that the surplus of known training information in the 
unknown testing region might be perceived as “noise” from the 
network. As Figure 4 shows, both PSNR and SSIM are maxi-
mized, while MSE is minimized, when training and testing CRs 
are equal. We conclude that the best setting for binary mask is 
CR (train) = CR (test).

Comparison with other methods. The original GIN model uses 
random single bounding boxes for training. By comparing the 
performance of our modified GIN-CS model with the same CR 
using binary mask networks (second column in Table 2) against 
the original GIN model with bounding boxes (third and fourth 
columns in Table 2), we can see our model improving the MSE 
and SSIM in all CR cases. Focusing on one trace from the testing 
image, we observe how our model’s prediction aligns better with 
the ground truth (second column in Figure 5) relative to the GIN 
(third column in Figure 5). 

Furthermore, we compare our GIN-CS with the conventional 
biharmonic method. As the first two columns in Figure 5 dem-
onstrate, the GIN-CS models perform a more accurate signal 
prediction. Moreover, the evaluation matrices of MSE and SSIM 
are reported in Table 2.1 and 2.2, demonstrating the overall 
superior performance of our method. 

Although for CR = 8, 16, our method does not achieve better 
performance in terms of PSNR (Table 2.3), it still generates 
closer-to-real seismic images without adding more artificial noise 
(GIN) or creating blurry fillings (biharmonic). An example of 
CR 8 is shown in Figure 6.

In terms of speed, the GIN-related methods are approximately 
300 times faster than the traditional method, as seen in 
Table 2.4. More importantly, the run times are hardly influenced 
by the value of CR, contrary to the additional computational effort 
required by the biharmonic method.

Uniform sampling on whole data set. We test the GIN-CS on 
a 3D cube of the GoM data of approximate size 1500 × 1300 × 1000 
pixels. There are 1500 crossline images of size 1300 × 1000 pixels 
each and 1300 inline images of 1500 × 1000 pixels. 

Initially, we applied compression recovery on all the crossline 
images and inline images separately. Then, we combined the 

Table 1. Basic parameters for training.

L1 loss  
α1

GAN 
 loss

GP loss  
λGP

Feature loss 
λ

Batch size Iterations per epoch

1.2 0.001 2000 0.01 10 2000

Figure 4. The error bar of (a) PSNR, (b) SSIM, and (c) MSE over 100 testing samples with different training and 
testing settings by GIN-CS. For each testing scenario, PSNR and SSIM reach the maximum values; MSE reaches  
the minimum values only when CS rates of training and testing are the same (squared dots). 
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results of crossline and inline by taking 
the average of the overlapped regions 
(depth view at depth = 500 is shown 
in Figure 7) in order to mimic the 
actual sampling in both dimensions at 
the same time. We are clear of the fact 
we only run the reconstruction on 
crossline and inline, and we plot it in 
depth only for validation purpose.

Experiments on nonuniform 
sampling

Random sampling. A nonuniform 
sampling scheme aims at recovering 
missing information under arbitrarily 
arranged, nonuniformly sized sampling 
scenarios only by restricting the maxi-
mum number of subsequent missing 
traces. To demonstrate the capability 
of the nonuniform sampling, we test 
a GIN model trained with bin width = 8 
on several random sampling cases. The 
random sampling is independently 
generated by periodically shuffling the 
uniform sampling trace location. In 
this way, the nonuniform sampling 
series is able to imitate the real 
nonuniform acquisition scenarios. We 
report our findings in the last column 
of Table 4. We note that, in nonuni-
form cases, we examine the CR = 2, 3, 
4 due to the restriction of bin width 
and CR.

Sampling survey recommendation. 
Thinking toward a robust construction 
scheme for a nonuniform optimal sam-
pling survey setup, we also propose a 
sampling recommendation approach 
that leverages the fast implementation 
of image reconstruction with GIN. Our 
proposal is a fast, nonuniform sampling 
recommendation method, based on 
hierarchical uniform sampling, which 
requires only a small number of sam-
pling test cases. We should note here 
that our recommended sampling 
method does not consider the connected 
sampling crossing section width, and 
its speed relies highly on the perfor-
mance of the GIN.

Step 1: Mask generation. For a given 
uncompressed seismic image x of height 
H and width (total number of traces) W, 
we designed a set of binary masks  
 
S = { mi

b( ) | b ∈ 1,2,4,8{ }, i ∈ 0,1,2,3…B
b
−1 { }}   

 

Table 2. MSE, SSIM, PSNR, and runtime performance comparison of uniform sampling by different methods. 
GIN-CS* is our method. The highest values of each testing compression rates are bolded. 

1) MSE GIN-CS* GIN (bbox8) GIN (bbox16) Biharmonic

CR2 21 32.6 32.4 27.5

CR4 35.9 43.7 46.8 51.3

CR8 46.1 52.6 59.7 68.4

CR16 56.2 64.5 60.7 81.9

2) SSIM GIN-CS* GIN (bbox8) GIN (bbox16) Biharmonic

CR2 0.9 0.61 0.65 0.84

CR4 0.7 0.52 0.55 0.59

CR8 0.44 0.32 0.27 0.34

CR16 0.22 0.14 0.17 0.19

3) PSNR GIN-CS* GIN (bbox8) GIN (bbox16) Biharmonic

CR2 19.5 dB 13.8 dB 14.7 dB 18.1 dB

CR4 14.1 dB 12.4 dB 13.1 dB 13.9 dB

CR8 10.4 dB 10.4 dB 9.70 dB 11.2 dB

CR16 8.0 dB 7.7 dB 8.2 dB 9.6 dB

4) Runtime(s) GIN-CS* GIN (bbox8) GIN (bbox16) Biharmonic

CR2 2.9 2.1 2.1 162.0

CR4 1.7 1.9 1.7 354.7

CR8 1.8 1.9 1.8 465.8

CR16 2.0 1.7 1.6 506.2

Figure 5. Trace comparison of uniform sampling with (a) biharmonic method (traditional sampling method),  
(b) GIN-CS (our method), and (c) GIN by bounding boxes (original GIN method). The smaller the shading areas 
are, the better the reconstruction performance is. GIN-CS performance is similar to the biharmonic method and a 
significant improvement over GIN. 
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where b is defined as the bin width of each group of connected missing 
traces and i is defined as the shifting index. In our experiments, we 
define section width B = 2 × bmax = 16. In total, there are 16/1 + 16/2 
+ 16/4 + 16/8 = 30 masks in set S. An example is shown in Table 3.  

Property 1. Within the subsets with same bin width {mi
(b)}, 

all the masks are nonoverlapping, and together they cover the 
image completely:

mi
b( ) = JH ×Wi=0

16
b
−1∑ .                           (10) 

 
Step 2: Difference map generation. We test the image x with 

all the designed compression cases and generate 30 reconstruction 
results:

X
m0

1( ),m1
1( ),...m1

16( ){ } →GIN→ !x0
1( ), !x1

1( ),... !x1
16( ){ }

Then, we create the corresponding error matrix {Err1
(1), Err2

(1), 
…, Err2

(16)} by calculating the pixel-wise square error of the recon-
structions compared with ground truth. 

Erri
b( ) = x − !xi

b( )( )H ×W

2
.                      (11) 

From Property 1, we know that the nonzero pixels in the error 
matrixes in each subset {Erri

(B)} are complementary to each other. 
So, summing them up, we form a complete image difference map 
and calculate its trace-wise mean vector with the size of 1 × W. 
For sampling by bin width b, the trace-wise average of difference 
map is defined as

Diff b( ) = 1
H

Erri
b( )

i=1

16/b∑h=1

H∑ =|d1
b ,  d 2

b ,…,  dw
b

1×W  .       (12) 

Step 3: Initial candidate traces generation. The difference map 
means vector is split into the individual difference values dw for each 

Table 3. Example of a binary mask, mask1
(4). Unknown pixel is denoted as 1 and shaded in the table.

Trace 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

i 0 1 2 3 0 1

Figure 6. Reconstruction comparisons of CR 8. The second and third columns show closeup regions of CR 8 figures framed in yellow and green. (Seismic data courtesy of TGS)
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Figure 7. Stacked depth view comparing uniform sampling over CR = 2, 4, 8, 16 on a 512 × 512 cropped region of the GoM data set. All the crossline and inline sampled 
images are stacked together to form a 3D reconstruction of the whole block, showing its 2D depth view at depth = 500 only for validation. (Seismic data courtesy of TGS)
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trace w. A smaller dW
b value indicates better reconstruction at trace 

W. A plot example of the trace-wise average over bin width b = 2, 4, 8 
for 64 traces is shown in the top left of Figure 8. (The b = 1 case is 
not displayed because it lies far below the other three curves.) 

To compare dw
b for each trace w without breaking the unknown 

connected traces, we introduce the observed interval v  {2, 4, 8} 
to distinguish from the concept of bin width b. The step mean 
difference is then defined by simply replacing the actual difference 
value dw as its mean value over every v interval

sdw
b ,v = 1

v
dw

b

i=v w
v

⎡
⎣⎢

⎤
⎦⎥

v w
v

⎡
⎣⎢

⎤
⎦⎥
+v

∑ .                           (13) 

For an observed interval v, the initial recommended candidate 
traces w' are the first trace indexes that reach the smallest step 
mean difference, when b = v.

′w v( ) =  argminw ,v sdw
b ,v( )   ∧ b = v( )  ,  b ∈ 2,4,8{ } .      (14) 

All candidate traces over the interval v form cand (v) = {w' (v)}, 
regarded as a subset of all traces. Figure 8 highlights the initial 
recommendation of bin width candidates w' (v) as solid dots. Of 
course, one trace might be a candidate for selection from several 
intervals or might never become a candidate for selection.

Step 4: Top-to-bottom hierarchical sorting.

Algorithm 1 Top-to-bottom hierarchical sorting 

Total miss trace = 0

while Total miss trace < W(1 - 1/CR)  do

  Final recommended traces W*= { }

  Construct binary searching tree T
–

  for v = 8,4,2,1 do

       Sort ( cand (v) ) according to sdw
b,v, where b = v

       for w' (v) in  cand(v) and w' (v) in T–:
         W* = W* ⋃ {w' (v),w' (v) + 1, … w' (v) + v - 1}
         Total miss trace = |W*|

         Remove all the nearest adjacent nodes, child 

nodes and the nearest adjacent nodes of the child 

nodes of t
–

w'(v)
(4)  from T

–

        end for

  end for 

end while   						    

To avoid repetitive trace selection, we implement a two-
order sorting on all the candidate traces as Algorithm 1 dem-
onstrates. For a node t–j

(v), its nearest adjacent nodes = 
t j−v

v( ) ,  t j+v
v( ) |  j − v ≥ 0 , j + v ≤W{ }. For example, as Figure 9 dem-

onstrated, when a candidate trace  t
  ′w v( )
4( ) =  t4

4( ) is observed in the 
tree  T , its nearest adjacent nodes {t0

4( ),  t8
4( )}, child nodes 

{ t4
2( ),  t6

2( ),  t4
1( ),  t5

1( ),  t6
1( ),  t7

1( )} , and the nearest adjacent nodes 
of the child nodes { t2

2( ),   t8
2( ),  t3

1( ),  t8
1( )}  are removed from  T . 

Figure 8. Example of column average of the difference map and its step 
mean over intervals. The x-axis stands for trace index, and the y-axis stands 
for the difference value over each trace. Dashed lines represent the step 
mean difference values over various observed intervals. Filled dots are the 
candidate traces.

Figure 9. Binary search tree for all traces. For example, when a candidate trace 
(framed in green) is observed in the tree, its nearest adjacent nodes, child nodes, 
and the nearest adjacent nodes of the child nodes are removed from the tree 
(denoted by red x’s).
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The elements in the final set of W * are the prospective missing 
traces, which are easily recovered by the GIN. We mention that 
our recommended sampling method does not consider the con-
nected sampling crossing section width, and the effectiveness 
highly relies on the performance of the GIN. 

Performance of recommended sampling. We have compared 
the reconstruction performance result of our recommended sam-
pling survey with an average of 100 random samplings, and we 
report the improvement in Table 4.

Sampling recommendation on whole data set. We run the 
sampling recommendation on the same GoM data set in both 
inline and crossline directions. As the depth view in Figure 10 
shows, the recommended sampling points are densely distributed 
in regions with lithologic features and sparsely distributed in 
channelized regions. This successfully captures the heterogeneity 
of the seismic image.

We note that our current recommendation of nonuniform 
sampling survey is given by the prior information of the 

Figure 10. Stacked depth view comparing recommended sampling over CR = 2, 3, 4 on a 512 × 512 cropped region of the GoM data set. All the crossline and inline 
sampled images are stacked together to form a 3D reconstruction of the whole block, showing its 2D depth view at depth = 500 only for validation. (Seismic data 
courtesy of TGS)
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historical images in the region. 
However, for new unexplored regions, 
the sampling could require additional 
geologic information. 

Conclusion
We designed and implemented a 

modification of the GIN model, the 
GIN-CS, and successfully tested its 
performance on uniform samplings with compression rates ×2, ×4, 
×8, ×16. The GIN-CS demonstrates superior reconstruction per-
formance relative to both the original GIN and the conventional 
biharmonic method. More precisely, we show that seismic imaging 
can be recovered successfully by filling the missing traces, revealing 
finer details even in cases of high compression rates. In addition, 
the proposed method runs approximately 300 times faster than the 
conventional biharmonic method. Finally, a strategy for constructing 
a recommendation of nonuniform survey is proposed for a field 
data set from the GoM, based on our results from a combination 
of limited amounts of uniform sampling experiments. 
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