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Swell-noise attenuation: A deep learning approach

Abstract
Noise attenuation for ordinary images using machine learning 

technology has achieved great success in the computer vision field. 
However, directly applying these models to seismic data would not 
be effective since the evaluation criteria from the geophysical domain 
require a high-quality visualized image and the ability to maintain 
original seismic signals from the contaminated wavelets. This paper 
introduces an approach equipped with a specially designed deep 
learning model that can effectively attenuate swell noise with 
different intensities and characteristics from shot gathers with a 
relatively simple workflow applicable to marine seismic data sets. 
Three significant benefits are introduced from the proposed deep 
learning model. First, our deep learning model doesn’t need to 
consume a pure swell-noise model. Instead, a contaminated 
swell-noise model derived from field data sets (which may contain 
other noises or primary signals) can be used for training. Second, 
inspired by the conventional algorithm for coherent noise attenu-
ation, our neural network model is designed to learn and detect the 
swell noise rather than inferring the attenuated seismic data. Third, 
several comparisons (signal-to-noise ratio, mean squared error, and 
intensities of residual swell noises) indicate that the deep learning 
approach has the capability to remove swell noise without harming 
the primary signals. The proposed deep learning-based approach 
can be considered as an alternative approach that combines and 
takes advantage of both the conventional and data-driven method 
to better serve swell-noise attenuation. The comparable results also 
indicate that the deep learning method has strong potential to solve 
other coherent noise-attenuation tasks for seismic data.

Introduction
Swell noise, caused by long-period changes in the ocean 

surface, is a type of incoherent noise characterized by low frequen-
cies and high-amplitude features. Swell-noise attenuation is usually 
the first step in processing marine seismic data. It is crucial to 
have clean results, as the high-amplitude features of swell noise 
can mask the signal of interest. The successful separation of true 
reflection signals and unwanted noise is a long-standing problem 
in seismic data processing. It greatly affects the fidelity of subse-
quent seismic imaging (Claerbout, 1985; Dai et al., 2012) and 
geophysical inversion, such as amplitude-variation-with-offset 
inversion (Buland and Omre, 2003; Li and Mallick, 2014), full-
waveform inversion (Pratt, 1999; Chen et al., 2016, 2018), and 
geologic interpretation (Brown, 2011). Seismic data are inevitably 
affected by different types of noise. The existence of noise in 
prestack seismic data affects the amplitude information, which 
causes unreliable inversion results. For poststack seismic data, the 
existence of noise affects the ability of interpretation, which 
directly links the modeling of subsurface reservoirs.
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Seismic noise attenuation has gone through a long history of 
development. Most conventional methods utilize signal features, 
such as wavenumber and frequency and domain transformation, 
to attenuate seismic noise. Noise attenuation for images using 
machine learning technology has also achieved success in the 
computer vision field. Deep learning in the denoising task for 
images developed in the past decades. Convolutional neural 
networks (CNNs) train the network through learning lower 
dimensional representations of the image features. By taking 
advantage of the CNN, many advanced noise-attenuation models 
have been proposed (He et al., 2016; Lehtinen et al., 2018; Zhang 
et al., 2018; Guo et al., 2019).

However, directly applying these methods to seismic data 
may not be practical since the geophysical domain requires the 
visual quality of the seismic image and the recovery quality of 
seismic signals. For example, for training purposes, the CNN 
would decrease the loss value (e.g., L1 loss or L2 loss) and make 
the predicted value converge to a certain level. As a result, some 
noise with significant amplitude changes, such as swell noise, will 
not be effectively detected and removed by these methods. This 
is due to the algorithm converging to a local optimum, and instead 
of keeping the phase information, such objective function aims 
to average the signal variations. Geophysical domains do not 
accept such results since the priority of noise attenuation is to 
keep the information from original signals.

In this paper, we would like to bring state-of-the-art techniques 
of noise attenuation from the computer vision field to the geosciences 
and make a variant version of the technique to fit the requirements 
in the geophysical domain, specifically for swell-noise attenuation. 
We will introduce related works about conventional solutions for 
seismic noise attenuation and state-of-the-art deep learning-based 
solutions for image noise attenuation. Then, we will introduce our 
model frame and apply our model to two cases. This will be followed 
by a results analysis. In summary, our main contributions are: 
(1) the proposal of a deep learning-based approach for swell-noise 
attenuation with consumption of a contaminated swell-noise model; 
(2) better denoising results in terms of noise detection and primary 
protection; and (3) the avoidance of additional steps.

Related works
Conventional approaches for seismic noise attenuation. 

Seismic noise attenuation has gone through a long history of 
development. Most conventional methods utilize signal features, 
(e.g., wavenumber and frequency and domain transformation) 
to attenuate seismic noise. Specifically focusing on swell-noise 
attenuation, a straightforward approach is to apply FX filtering 
to the frequency range where the noise is present and replace 
noisy traces with their FX-filtered versions for these frequencies. 
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However, since noise amplitude can be high compared with the 
signal, residuals are often still unacceptable. Schonewille et al. 
(2008) introduce an improvement by applying FX filtering 
iteratively. Bekara and van der Baan (2010) develop an automatic 
method to exploit differences in statistical properties between 
swell noise and signal amplitudes to construct a detection cri-
terion. Sternfels et al. (2015) model the coherent signal via its 
low-rank trajectory matrix and the erratic noise as a sparse 
component of the input data. Their method can effectively sepa-
rate the signal and swell noise in the corrupted input. The method 
is the benchmark solution in this paper.

Deep learning for noise attenuation on ordinary images. Noise 
attenuation for images using machine learning technology has 
achieved great success in the computer vision field. Deep learning 
in the denoising task for images has been developed in the past 
decades (Rabie, 2005; Jain and Seung, 2009; Xie et al., 2012), 
and many research works indicate that Burger et al. (2012) made 
a giant leap in this field. CNNs train the network through learning 
lower dimensional representations of the image features. By utiliz-
ing CNNs, deep residual networks (ResNet) (He et al., 2016), 
and batch normalization (Ioffe and Szegedy, 2015), Zhang et al. 
(2017) propose the denoising CNN model, and it outperforms 
the traditional nonCNN-based methods. CNN-based techniques 
on noise attenuation have been widely and continually developed 
into many variants. Recently, the Noise2Noise (Lehtinen et al., 
2018) model was introduced for the noise-attenuation task without 
providing ground-truth information. CBDNet (Guo et al., 2019) 
consists of two subnetworks (noise estimation and nonblind 
denoising). It achieves state-of-the-art results in terms of quantita-
tive metrics and visual quality. Similarly, FFDNet (Zhang et al., 
2018), RED30 (Mao et al., 2016), BM3D-Net (Yang and 
Sun, 2017), and CS-DIP (Van Veen et al., 2018) also achieved 
prominent performances.

Methodology
In this section, we propose our deep learning-based solution, 

Only2Noise, for the seismic swell-noise-attenuation problem. We 
introduce the learning mechanism and main component (ResNet) 
of our model. Then, we show the model structure and loss function.

Model design: Learning mechanism. The existence of swell 
noise is due to long-period changes in the ocean surface. Therefore, 
the phenomenon of swell noise is not universal, and it has extremely 
unstable amplitudes. Directly applying an existing deep learning-
based denoising model to seismic swell-noise attenuation may 
obtain results without physical meaning. For example, the denoised 
seismic image using these methods can change the phase and 
spectrum of the signals and eventually hurt the primary signals 
due to high amplitudes from the swell noise. As a result, the swell 
noise may not be effectively detected and removed by using the 
traditional deep learning-based models while there exists signifi-
cant residual swell noise or strong distortion on the primary signals.

Due to the coherent features of swell noise, the rationale is 
to design a model with residual networks to learn and predict 
the swell noise rather than the clean image. In other words, our 
residual network model is trained to extract the swell noise 
rather than to attenuate it. Specifically, for any training image 

s + n, we design our model to map Fs  :  s  + n( ) → n instead of  
F  :  s  +  n( ) → s , where s is the clean signal and n is swell noise.

For random noise attenuation on ordinary images, learning 
the pattern of noise is difficult since random noise may not have 
strongly recognizable patterns. Some of the hybrid methods tend 
to derive denoised images by separating noise from raw data (e.g., 
Li et al., 2019). However, such methods not based on deep learning 
require additional steps to recover the primary signals due to 
excessive attenuations of primary signals. Unlike conventional 
methods, the proposed approach leverages the deep residual 
network, learns how to directly detect the swell noise, and then 
obtains attenuated data by removing swell noise from the corrupted 
raw data set. Therefore, one of the contributions of this paper is 
to directly capture the pattern of the swell noise using the deep 
learning-based residual network. Such learning processes can be 
beneficial to process different types and conditions of primary 
signals and to reduce the probability of overfitting issues. As far 
as we know, such deep learning residual network models, which 
only capture the swell-noise pattern on seismic data, have not 
been used in previous studies. Since only the patterns of swell 
noise are learned, we name our method Only2Noise.

Model design: ResNet components. In the machine learning 
society, CNNs have been widely used in image processing, such 
as image classification (Krizhevsky et al., 2012) and face recogni-
tion (Lawrence et al., 1997). ResNet (He et al., 2016), a deeper 
version of CNN, solved the problem that a deeper network may 
cause higher training/testing loss. ResNet splits the original 
mapping x  ⇒ H   x( )  into two parts:

x  ⇒  f   x( ) residual  mapping( )  (1)
and

x  +  f   x( ) ⇒ H   x( ) , (2)

where x denotes the original 
identity, f(x) denotes the 
residual mapping, and H(x) 
denotes the final mapping.

In this way, the problem of 
vanishing or exploding gradi-
ent and degradation of tradi-
tional stacked deep CNN 
would be eliminated. Many 
variants of ResNet have been 
developed in recent years, such 
as the superresolution residual 
network (SRResNet) (Ledig 
et al., 2017) and EDSR+ (Lim 
et al., 2017). In this paper, we 
design our deep learning model 
based on the ResNet structure.

Only2Noise is designed 
to include residual blocks. 
Figure 1 shows the inside 
components of each residual 
unit. We use the shortcut con-
nection to link the input and 

Figure 1. A residual unit with five 
internal layers.
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output of each residual block. In each residual unit, we use the 
same 3 × 3 convolutional layer followed by a batch normalization 
layer to expedite the convergence and to avoid overfitting. For the 
activation function, SRResNet, we employ Parametric ReLU (He 
et al., 2016) instead of ReLU used in the traditional ResNet.

Model design: Model structure. The model structure is shown 
in Figure 2. Our swell-noise-attenuation model, Only2Noise, 
generates the swell noise Fs  (S |θ )  when given the corrupted 
seismic data S as input and trained model parameter set θ. The 
final predicted seismic images S' are achieved by subtracting the 
predicted noise from the corrupted input data S defined as:

S' = S – Sf (S|θ).                              (3)

Similar to the traditional deep learning-based denoising 
model, we use the L2 norm to measure the difference. However, 
since our predicted value in this model is the swell noise (rather 
than the clean image), we change our loss function as follows. 
Given a corrupted signal S as input, the predicted swell noise 
Fs(S|θ)(M × N), and the target ground-truth image matrix Ŝ(M × N), we 
calculate the loss as follows: 

 
 

loss =  Fs S|θ( )i , j − Si , j − Ŝi , j( ) 2

j=1

N∑i=1

M∑ .                (4)

For parameter tuning, we use the pair predicted swell noise Fs(S|θ) 
and the ground-truth signal Ŝ  to tune the parameters θ to mini-
mize the pixel-wise loss:

argmin
 θ

Fs S |θ( )i , j − Si , j − Ŝi , j( ) 2

j=1

N∑i=1

M∑ .               (5)

Evaluation metrics. For evaluation purposes, we use the 
following measurements. The signal-to-noise-ratio (S/N) is defined 
as the ratio between the variance of the original gather and the 

noise, where noise is the difference between the corrupted signal 
and the clean signal. Given corrupted seismic data S (or denoised 
seismic S') and its clean sample Ŝ, S/N is defined as:

SNR = 10 log10

Ŝ( )2
S  − Ŝ( )2

.                           (6)

 
Mean squared error (MSE) is defined as the average of the 

element-wise squared difference between the predicted signal and 
true signal, calculated as:

MSE = 1
M × N

(Si , j − Ŝi , j )
2

j=1

N∑i=1

M∑ .                    (7)

Swell-noise attenuation on synthetic data sets
As mentioned earlier, the swell noise, caused by long-period 

changes in the ocean surface, is neither universal nor zero-mean. 
It always has recognizable patterns and consistencies in different 
situations. Therefore, in this section, we test the performance of 
our Only2Noise model on synthetic seismic data to validate the 
performance of the deep learning model.

Data set preparation. First, a synthetic seismic data set rep-
resenting geologic information Ssyn is generated from real streamer 
data acquired from a Gulf of Mexico asset where there are 123 shot 
gathers associated with 556 traces for each gather. It is important 
to note that obtaining a pure swell-noise model is a difficult task. 
However, the proposed approach requires a learning target to 
proceed with the training process. In order to obtain a feasible 
solution, the idea of leveraging a swell-noise model derived from 
a conventional approach based on field data is introduced. A 
deswell workflow is applied to a small subset of the real data. 
Then, the swell-noise model n is generated from the subtraction 
of raw and deswell data. Eventually, the swell-noise model n is 
added back to the synthetic data set Ssyn. The raw synthetic data 
with swell noise are defined as:

Sraw = Ssyn + n.                                  (8)

Figure 2. Residual neural network architecture. The model takes the corrupted image as input and returns extracted swell noise. The final output is the denoised image 
subtracting the extracted swell noise from corrupted input.
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Based on the data set mentioned earlier, we now have 123 shot 
gathers with 556 traces and 1800 timestamps. We randomly select 
30% of the data as the training set for model training and parameter 
learning, 10% as the validation set for hyperparameter tuning, 
and the other 60% as the test set for final evaluation.

Experiment settings. We applied the loss function in 
equation 4. During the training process, MSE (equation 7) and 
S/N (equation 6) are used as evaluation metrics.

The training process is automatically terminated once the 
monitored performance converges. All parameter weights will 
be saved to a file. For hyperparameter tuning, we applied the 
validation data to adjust the hyperparameters (i.e., learning rate, 
feature dimension, number of residual units, and steps per epoch). 
We adopt the adaptive moment estimation (Kingma and Ba, 
2014) as the optimizer for training, since it yields faster conver-
gence compared to stochastic gradient descent. The optimal 
hyperparameters (Table 1) will be used in the final model training.

 Results and analysis. In this section, we show the denoised 
results using the Only2Noise model on the testing set. Moreover, 
we present comparisons of the common channel and stacking 
results in the frequency panel between the conventional and 
Only2Noise approach. Rather than focusing only on the ability 
of noise attenuation, we also pay attention to the distortion of 
the primary signal. It is always a trade-off between attenuating 

noise and the ability to maintain primary signals in seismic 
data processing. In other words, an algorithm with stronger 
denoising ability is more likely to hurt the primary signals. 
For these conventional methods, such as frequency-domain 
transformation, it is apparent that remaining residual noise 
stays in high possibilities to prevent hurting the primary signals.

Figure 3 shows the denoised results on selected gathers. 
Figure 3a shows the synthetic data with the swell noise, Figure 3b 
shows the denoised results using the Only2Noise model, and 
Figure 3c shows the difference between Figures 3a and 3b, which 
is also the detected swell noise. Figure 3c shows synthetic noise-free 
data. On one hand, by visual comparison, most of the swell noise 
has been attenuated; however, there is still some mild residual 
swell noise in the denoised results. On the other hand, in Figure 3c, 
we observe that the primary signals have not been hurt. Focusing 
on the modeled swell noise, the swell noise has been successfully 
learned and detected from the input raw data.

MSE and S/N. Table 2 shows the denoised results in respect 
to MSE and S/N on the testing set. As we can see, when compared 
with the corrupted raw data, the denoised data decreased the 
MSE from 975.848 to 9.740 with 99.00% improvement, and 
denoised data improved the S/N from 28.1 to 48.1 dB with 
71.29% improvement.

Frequency panel, common channel, and stacking results. 
Figures 4a and 4b show the comparison of testing corrupted raw 
data and denoised data on the frequency panel, respectively. By 
checking each range of frequency of the raw data, we can observe 

Figure 3. Synthetic data. Denoised results of selected gathers as examples. (a) Synthetic data with the swell. (b) Denoised results using the Only2Noise model. 
(c) Difference between (a) and (b), which is the detected swell.

Table 1. Optimal hyperparameters for Only2Noise.

Hyperparameters Optimal value

Learning rate 0.05

Feature dimension 32

# of residual units 16

Optimizer Adam

Steps per epoch 2000

Table 2. Denoised results in respect to MSE and S/N.

Raw Denoised Improved

MSE 975.848 9.740 99.00%

S/N 28.1 dB 48.1 dB 71.29%
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that the swell noise is more concentrated on the low-frequency range 
(i.e., 0 to 20 Hz), and a few exist on the high-frequency 
range (i.e., 20 Hz and more). From the perspective of geoscience, 
low-frequency data are essential to full-waveform inversion pro-
cesses, and high-frequency data contribute to imaging resolution. 
Therefore, denoising for both the low- and high-frequency range 
are important. Figure 4c shows the detected swell noise on each 
frequency range.

Compared with the raw data, the Only2Noise model effectively 
removes most of the swell noise in each frequency model and 
performs better in the high-frequency part. In respect to keeping 
primary signals, as we can see in Figure 4c, most of the swell 
noise has been detected without strong primary hurts. There is 
only a mild hurt in the low-frequency range (0 to 10 Hz).

In respect to common channel (Figure 5) and stacking results 
(Figure 6), we can observe that the Only2Noise method has a 
strong ability of swell-noise attenuation for seismic data with mild 
hurts of primary signals. For detailed comparison, Figure 6c 
shows the stacking results of detected swell noise. As we can see, 

primary hurts are slight and do not have a strong impact on the 
follow-up analysis.

Swell-noise attenuation on field data sets
In the previous section, we show the performance of our 

proposed Only2Noise model on the swell-noise-attenuation task 
on a synthetic data set. In respect to MSE and S/N, Only2Noise 
can effectively improve data quality. By detailed review of the 
frequency panel, common channel, and stacking results, our 
model can effectively detect the swell noise and return a remark-
ably better deswell result with mild primary hurts. In this section, 
we apply our learned model to the noise-attenuation task to field 
data sets and compare the results with conventional methods 
(Sternfels et al., 2015).

Seismic field data with swell noise in the Gulf of Mexico data 
set are used as raw input for noise attenuation. To fit the dimension 

Figure 4. Synthetic data. Comparison of (a) corrupted raw data, (b) denoised data, 
and (c) detected swell (difference between [a] and [b]) on the frequency panel.

Figure 5. Synthetic data. Common channel comparison of (a) corrupted raw data, 
(b) Only2Noise denoised data, and (c) removed swell (difference between [a] 
and [b]).
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Figure 6. Synthetic data. Stack results comparison of (a) corrupted raw data, (b) Only2Noise denoised data, and (c) removed swell (difference between [a] and [b]).

Figure 7. Field data. Comparison of (a) detected swell by the reference method and (b) detected swell by Only2Noise on the frequency panel.
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of the synthetic data set, we chose 123 shot gathers with 556 traces 
and 1800 timestamps in our entire field data set. We directly 
applied our pretrained Only2Noise model to the field data set and 
show the deswell results in the following sections.

 Results and analysis. Unlike experiments on the synthetic 
data set, in this experiment, we do not have the ground-
truth data to compare with. Rather than checking the MSE 
and S/N, we visually compare our deswell results with the 
results of conventional methods (the reference method).

Figure 7 shows the frequency panel of the detected swell noise 
in a field data set by the reference method (Figure 7a) and 
Only2Noise method (Figure 7b). Compared with results from 
conventional methods, our results can detect similar swell-noise 
patterns albeit with fewer primary hurts in each frequency range. 
These improvements can be more prominent when we compare 
the common channels and stacking results.

Although a contaminated swell-noise model is provided 
for training the deep learning model, the proposed method 
still introduces apparent uplifts in terms of generating a 
stronger swell-noise model by comparing it with the original 
swell-noise model used for training. In respect to common 
channel (Figure 8) and stacking results (Figure 9), we observe 
that the Only2Noise method has a strong ability of swell-noise 
attenuation for seismic field data. Specifically, when compared 
with denoised common channel results by the reference method 
(Figures 8b and 8c), the Only2Noise model presents a trend 
of attenuating more swell noise in certain locations (red color). 
When compared with the stacking results (Figure 9) between 
denoised results by the reference method and by the Only2Noise 
method, we can see that our deep learning-based method has 
a strong ability to remove the swell noise with a sharper 
imaging quality and a better chance of interpretation of the 
geologic information.

Only2Noise on other marine data sets. The generalization of 
the deep learning model remains an active research topic in the 
academic community. Due to the complexity and variations of 
swell-noise characterizations, we do not expect to use one single 
model for swell-noise attenuation in all marine data sets. As long 
as the workflow introduced in this paper is followed, satisfactory 
results can be obtained for any marine data set. The corresponding 
workflow is summarized as:

1) Preparing a small synthetic primary model using geologic 
information from target marine data (similar to 
conventional methods)

2) Modeling a small portion of swell noise from target marine data
3) Training the deep learning model by leveraging the synthetic 

primary model and swell noise.

Conclusion
In this paper, we proposed a deep learning model with 

CNN-based residual neural networks for seismic swell-noise-
attenuation tasks. Our model, Only2Noise, is applied to a 
synthetic data set and a field data set. It obtains strongly com-
parable results when compared with conventional approaches. 
With clear uplifts from two metrics of MSE and S/N, Only2Noise 
effectively and significantly enhances the quality of raw data. 

By detailed and careful review of the frequency panels, common 
channels, and stacking results, our model indicates that the swell 
noise has been effectively detected and removed with mild 
primary hurts. The results show that the proposed technique 
can return a premium imaging quality with limited influence 
on the signal of interest.

The main contribution of this paper is to share a deep learning-
based solution for swell-noise attenuation by directly training a 
swell-noise model. Such a swell-noise model can be derived from 
any marine data by using the conventional algorithm. Effectively 
and efficiently training on even a contaminated swell-noise model, 
guarantees an improved performance of attenuating swell noise 
from raw data. Such a method, in combination with conventional 
and data-driven algorithms, introduces a new means with strong 
potential to solve attenuation tasks relevant to swell noise as well 
as other coherent noise. 
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Figure 8. Field data. Common channel comparison of (a) corrupted raw data, 
(b) reference denoised data, and (c) Only2Noise denoised data.

D
ow

nl
oa

de
d 

06
/2

7/
22

 to
 2

05
.2

51
.2

33
.1

83
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/tl

e3
81

20
93

4.
1



December 2019     THE  LEADING EDGE      941

Data and materials availability
Data associated with this research are available and can be 

obtained by contacting the corresponding author.

Corresponding author: xingzhao@tamu.edu

References
Bekara, M., and M. van der Baan, 2010, High-amplitude noise 

detection by the expectation- maximization algorithm with 
application to swell-noise attenuation: Geophysics, 75, no. 3, 
V39–V49, https://doi.org/10.1190/1.3428749.

Brown, A. R., 2011, Interpretation of three-dimensional seismic 
data: AAPG and SEG.

Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion: 
Geophysics, 68, no. 1, 185–198, https://doi.org/10.1190/1.1543206.

Burger, H. C., C. J. Schuler, and S. Harmeling, 2012, Image denoising: 
Can plain neural networks compete with BM3D?: Conference on 
Computer Vision and Pattern Recognition, IEEE, Extended 
Abstracts, 2392–2399, https://doi.org/10.1109/CVPR.2012.6247952.

Chen, J., C. A. Zelt, and P. Jaiswal, 2016, Detecting a known near-
surface target through application of frequency-dependent trav-
eltime tomography and full-waveform inversion to P- and SH-wave 

seismic refraction data: Geophysics, 82, no. 1, R1–R17, https://
doi.org/10.1190/geo2016-0085.1.

Chen, J., D. Sixta, G. Raney, V. Mount, E. Riddle, A. Nicholson, 
H. Ma, H. Ji, and C. Peng, 2018, Improved subsalt imaging from 
reflection full-waveform inversion-guided salt scenario interpreta-
tion: A case history from deepwater Gulf of Mexico: 88th Annual 
International Meeting, SEG, Expanded Abstracts, 3773–3777, 
https://doi.org/10.1190/segam2018-2996573.1.

Claerbout, J. F., 1985, Fundamentals of geophysical data processing 
— With applications to petroleum prospecting: Blackwell 
Scientific Publications.

Dai, W., P. Fowler, and G. T. Schuster, 2012, Multi-source least-
squares reverse time migration: Geophysical Prospecting, 60, no. 
4, 681–695, https://doi.org/10.1111/j.1365-2478.2012.01092.x.

Guo, S., Z. Yan, K. Zhang, W. Zuo, and L. Zhang, 2019, Toward 
convolutional blind denoising of real photographs: Conference 
on Computer Vision and Pattern Recognition, IEEE, Extended 
Abstracts, 1712–1722.

He, K., X. Zhang, S. Ren, and J. Sun, 2016, Deep residual learning 
for image recognition: Conference on Computer Vision and 
Pattern Recognition, IEEE, Extended Abstracts, 770–778, https://
doi.org/10.1109/CVPR.2016.90.

Figure 9. Field data. Stack results comparison of (a) corrupted raw data, (b) reference denoised data, and (c) Only2Noise denoised data.

D
ow

nl
oa

de
d 

06
/2

7/
22

 to
 2

05
.2

51
.2

33
.1

83
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/tl

e3
81

20
93

4.
1



942      THE  LEADING EDGE      December 2019  
    

Ioffe, S., and C. Szegedy, 2015, Batch normalization: Accelerating deep network 
training by reducing internal covariate shift: arXiv:1502.03167.

Jain, V., and S. Seung, 2009, Natural image denoising with convolutional networks: 
Presented at International Conference on Neural Information Processing Systems.

Kingma, D. P., and J. Ba, 2014, Adam: A method for stochastic optimization: 
arXiv:1412.6980.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, ImageNet classification with deep 
convolutional neural networks: Presented at International Conference on Neural 
Information Processing Systems.

Lawrence, S., C. L. Giles, A. C. Tsoi, and A. D. Back, 1997, Face recognition: A 
convolutional neural-network approach: IEEE Transactions on Neural Networks, 
8, no. 1, 98–113, https://doi.org/10.1109/72.554195.

Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, 
et al., 2017, Photo-realistic single image super-resolution using a generative 
adversarial network: Conference on Computer Vision and Pattern Recognition, 
IEEE, Extended Abstracts, 4681–4690, https://doi.org/10.1109/CVPR.2017.19. 

Lehtinen, J., J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. 
Aila, 2018, Noise2Noise: Learning image restoration without clean data: 
arXiv:1803.04189.

Li, C., Y. Zhang, and C. Mosher, 2019, A hybrid learning-based framework for 
seismic denoising: The Leading Edge, 38, no. 7, 542–549, https://doi.org/10.1190/
tle38070542.1.

Li, T., and S. Mallick, 2014, Multicomponent, multi-azimuth pre-stack seismic 
waveform inversion for azimuthally anisotropic media using a parallel and com-
putationally efficient non-dominated sorting genetic algorithm: Geophysical 
Journal International, 200, no. 2, 1136–1154, https://doi.org/10.1093/gji/ggu445.

Lim, B., S. Son, H. Kim, S. Nah, and K. Mu Lee, 2017, Enhanced deep residual 
networks for single image super-resolution: Conference on Computer Vision and 
Pattern Recognition, IEEE, Extended Abstracts, 136–144, https://doi.org/10.1109/
CVPRW.2017.151.

Mao, X., C. Shen, and Y.-B. Yang, 2016, Image restoration using very deep convo-
lutional encoder-decoder networks with symmetric skip connections: Presented 
at International Conference on Neural Information Processing Systems.

Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: 
Theory and verification in a physical scale model: Geophysics, 64, no. 3, 888–901, 
https://doi.org/10.1190/1.1444597.

Rabie, T., 2005, Robust estimation approach for blind denoising: IEEE Transactions 
on Image Processing, 14, no. 11, 1755–1765, https://doi.org/10.1109/
TIP.2005.857276.

Schonewille, M., A. Vigner, and A. Ryder, 2008, Swell-noise attenuation using an 
iterative FX prediction filtering approach: 78th Annual International Meeting, 
SEG, Expanded Abstracts, 2647–2651, https://doi.org/10.1190/1.3063892.

Sternfels, R., G. Viguier, R. Gondoin, and D. Le Meur, 2015, Joint low-rank and 
sparse inversion for multidimensional simultaneous random/erratic noise attenuation 
and interpolation: 77th Conference and Exhibition, EAGE, Extended Abstracts, 
https://doi.org/10.3997/2214-4609.201412979.

Van Veen, D., A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and A. G. 
Dimakis, 2018, Compressed sensing with deep image prior and learned regu-
larization: arXiv:1806.06438.

Xie, J., L. Xu, and E. Chen, 2012, Image denoising and inpainting with deep neural 
networks: Presented at International Conference on Neural Information Processing 
Systems.

Yang, D., and J. Sun, 2017, BM3D-Net: A convolutional neural network for transform-
domain collaborative filtering: IEEE Signal Processing Letters, 25, no. 1, 55–59, 
https://doi.org/10.1109/LSP.2017.2768660.

Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang, 2017, Beyond a Gaussian 
denoiser: Residual learning of deep CNN for image denoising: IEEE Transactions 
on Image Processing, 26, no. 7, 3142–3155, https://doi.org/10.1109/TIP.2017.2662206.

Zhang, K., W. Zuo, and L. Zhang, 2018, FFDNet: Toward a fast and flexible solution 
for CNN-based image denoising: IEEE Transactions on Image Processing, 27, 
no. 9, 4608–4622, https://doi.org/10.1109/TIP.2018.2839891.

D
ow

nl
oa

de
d 

06
/2

7/
22

 to
 2

05
.2

51
.2

33
.1

83
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/tl

e3
81

20
93

4.
1


