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ABSTRACT
The importance of the distribution of ratings on recommender sys-
tems (RS) is well-recognized. And yet, recommendation approaches
based on latent factor models and recently introduced neural vari-
ants (e.g., NCF) optimize for the head of these distributions, poten-
tially leading to large estimation errors for tail ratings. These errors
in tail ratings that are far from the mean predicted rating fall out
of a uni-modal assumption underlying these popular models, as
we show in this paper. We propose to improve the estimation of
tail ratings by extending traditional single latent representations
(e.g., an item is represented by a single latent vector) with new
multi-latent representations for better modeling these tail ratings.
We show how to incorporate these multi-latent representations in
an end-to-end neural prediction model that is designed to better
reflect the underlying ratings distributions of items. Through ex-
periments over six datasets, we find the proposed model leads to
a significant improvement in RMSE versus a suite of benchmark
methods. We also find that the predictions for the most polarized
items are improved by more than 15%.
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1 INTRODUCTION
How can we predict which popular movies a user will not like? Or
which users will like an app that has received mixed reviews? And
for controversial items with polarized ratings (e.g., political books),
how can we ensure that we recommend items to the right subset of
users? While recommender systems (RS) have made great strides in
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connecting users to the right items – be it on YouTube, Yelp, Netflix,
or Amazon – there are still great challenges in estimating these tail
ratings that are far from the mean rating for many items.

We say that the tail ratings are ratings from a user to a specific
item that are significantly lower or significantly higher than an
item’s average rating, typically accounting for a smaller fraction
of all ratings on an item. For example, Figure 1(a) shows the rating
distribution for six different data sets, all of which have a majority
of ratings in the upper ranges (with a mean rating of 3.3 to 4.3).
The tail ratings for Amazon Books could be defined as the ratings
of 1 or 2 (significantly below the average 4.09) that account for a
small fraction of all ratings. The tail ratings for MovieLens could be
defined as the 1-2 ratings, as well as the 5 ratings (well below and
above the average 3.35 rating). In contrast, the head ratings are those
ratings that are close to the average rating, typically accounting for
the majority of all ratings on an item.

While the importance of the distribution of ratings on RS has
been long recognized, e.g., [1, 2, 15, 36], many popular methods
based on latent factor models and recently introduced neural vari-
ants [3, 14, 20, 22, 25, 39] optimize for the head of these distributions,
potentially leading to large estimation errors for tail ratings. As
we will show in Section 3, these tail estimation errors are com-
mon across multiple domains and datasets, leading to large over-
estimations of the ratings of items with very low ratings, and large
under-estimations of the ratings of items with very high ratings.
For example, Figure 1(c) shows large RMSE prediction errors for
these tail ratings when using two popular latent factor models.
These errors can lead to bad recommendations, degrade trust in the
recommender, and for controversial items, potentially expose users
to items they are diametrically opposed to.

In this paper, we study the problem of estimating tail ratings with
an emphasis on improving the quality of these estimates within
latent factor models that drive many modern recommenders. We
show how many existing methods rely on an assumption of a single
latent representation that leads to large errors in tail rating estima-
tion. We conduct a data-driven investigation of the limitations of
such an assumption underlying these models whereby ratings are
assumed to fit a uni-modal distribution. Paired with this investi-
gation, we formally analyze the limitations of these single latent
representation methods with respect to tail ratings. With these
limitations in mind, we propose a new method which is designed
to learn multiple latent representations for better modeling these
tail ratings. In this way, the estimation of tail ratings can escape
the constraint of a uni-modal distribution. We show how to incor-
porate these multi-latent representations in an end-to-end neural
prediction model that is designed to better reflect the underlying
rating distributions of items. Through experiments over six datasets
from Amazon, Goodreads, and MovieLens, we find the proposed
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model leads to a significant improvement in RMSE versus a suite
of benchmark methods. We also find that the predictions for the
most polarized items are improved by more than 15%.

This paper is structured as follows. In Section 2, we summarize
related work in latent factor models and on dealing with rating dis-
tributions in the recommendation. Section 3 introduces the datasets
used in this paper, followed by a data-driven investigation and
theoretical analysis of the limitations of traditional latent factor
models for dealing with tail ratings. We introduce our proposed
multi-latent representation approach in Section 4, and then evalu-
ate it over multiple datasets in Section 5. Finally, we conclude our
work and point out future research opportunities.

2 RELATEDWORK
Ratings distributions. In terms of dealing with tail ratings, there
have been a few complementary works. For example, Gediminas
et al. investigated the impact of rating characteristics like rating
density, rating frequency distribution, and value distribution, on
the accuracy of popular collaborative filtering techniques [1]. Hu
et al. observed that product ratings tend to fit a ‘J-shaped’ distri-
bution [15] since users provide reviews are more likely to “brag
or moan” compared to all purchasers. As an extreme case of the
‘J-shaped’ distribution is the ‘U-shape’ of controversial items with
many extreme ratings on both sides of the distribution. Victor et
al. in [36] formalized the concept of controversial items in recom-
mendation systems and then compared the performance of several
trust-enhanced techniques for personalized recommendations for
controversial items with polarized ratings (bi-modal distribution)
versus other items. Similar to our observations, they showed that
predicting ratings for controversial items is much worse than for
other items. Badami surveyed state-of-the-art research on the polar-
ization [2], finding that many trust-based RS attempts to improve
recommendation for controversial items by defining a trusted net-
work for each user, e.g., [11, 27, 30, 35]. Recently, Beutel et al. pro-
posed a focused learning model to improve the recommendation
quality for a specified subset of items, through hyper-parameter
optimization and a customized matrix factorization objective [4].

Latent factor models. Latent factor model is one of the corner-
stones of RS, critical for traditional approaches [6, 19] as well as
recent neural variants like NCF [14] and others [3, 14, 21, 23, 33, 39].
Furthermore, these latent factor models have been adapted in a
number of directions, including location-aware recommendation
systems [5, 26, 29], aspect-aware latent factor models [8], and bio-
inspired approaches [31, 32], amongmany others. Aswewill demon-
strate in the following section, latent factor models typically depend
on an assumption of a single latent representation. That is, every item
and user has only a single latent representation. We refer to such
approaches as Single Latent Representation (SLR)-based methods.

At the core of these latent factor models, it is assumed that both
items and users live in a low-dimensional latent space, where the
latent factors typically capture user preferences and item character-
istics. For instance, Matrix Factorization finds the optimal low-rank
matrix Pm×r and Qn×r , representing user latent factors and item
latent factors respectively, such that P ·QT is close to the original
rating matrixMm×n , where r is the predefined low rank,m is the

# Users # Items # Ratings # Avg

Amazon Books 3,824 9,640 172,018 4.09
Amazon Digital Music 5,541 3,568 64,706 4.22
Amazon Kindle 68,223 61,934 982,619 4.35
Amazon CD & Vinyl 75,258 64,443 1,097,592 4.29
GoodReads 2,671 7,702 195,174 4.00
MovieLens 610 9,724 100,836 3.35

Table 1: All datasets have a globalmean around 3.35 to 4.35, with tail
ratings in the lower (1-2) and upper (5) portions of the distribution.

number of users, and n is the number of items.

arд min
P ,Q

(M − P ·QT )2 (1)

IfM is the user-item rating matrix, each row of P andQ corresponds
to a user latent factor and an item latent factor, respectively. Since
each user and item corresponds to a single row in P or Q , we say
this is an SLR-based method. In practice, many latent factor models
incorporate bias terms for users and items and a global offset into
the prediction model. For clarity in the discussion, consider the
classic matrix factorization model (MF) with bias:

r̂ = pu · qTi + bu + bi + µ (2)

where r̂ is the estimated rating. In this case, pu and qi are the latent
representations for user u and item i , respectively. The bias terms
capture user bias (bu ), item bias (bi ), and a global offset (µ).

More recently, neural variants like Neural Collaborative Filtering
(NCF) have been proposed to combine deep learning architectures
with traditional matrix factorization [14]. In particular, NCF is struc-
tured with two sub-models: GeneralizedMatrix Factorization (GMF)
and a Multi-Layer Perceptron. The GMF submodel corresponds to
a neural version of MF, and so also relies on a single latent vector
for representing a user’s preference or an item’s characteristics.

3 TAIL RATINGS: OBSERVATIONS AND
ANALYSIS

In this section, we conduct a two-part investigation of the single
latent representation assumption underlying latent factor models
like MF and NCF and how this impacts tail ratings. Firstly (Sec-
tion 3.1), we demonstrate the challenges in estimating tail ratings
across six datasets that are due to the fundamental uni-modal latent
factor distribution. Secondly (Section 3.2), we formally analyze the
limitations of SLR-based methods with respect to tail ratings.

3.1 Data-Driven Study
We use six ratings-based datasets: Amazon Books, Amazon Digital
Music, Amazon Kindle, and Amazon CDs & Vinyl [13], Movie-
Lens [12], and GoodReads [37]. For each, we adopt the N-core
selection criteria which have been shown to lead to more robust
training and evaluation: that is, each user gives at least N ratings,
and each item receives at least N ratings. Specifically, we use 12-core
for Amazon Books and 5-core for the others. For MovieLens, we
consider users who have rated at least 20 movies. For the following
analyses and experiments, we randomly split the ratings of each
user into training, validation, and test sets using a random 60%,
20%, 20% split. Details of these datasets are shown in Table 1.

Observations: All Ratings. For each dataset, we estimate ratings
of the test set using the standard latent factor model in Equation 2
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Figure 1: The count of ratings for six different datasets (a); the predicted ratings by MF and NCF are uni-modal as shown in (b); meaning that
errors are concentrated in the tails of the predicted distributions (c).

(MF) and a neural variant based on NCF, since these two are foun-
dational for both traditional and neural recommenders.

Figure 1 (a) shows the original rating distribution in the test set
for each of our six datasets. Aswe can see, from the perspective of all
ratings, the count of the original ratings fits a uni-modal distribution.
The tail ratings (e.g., rating ‘1’ and ‘2’ for many datasets, but also
rating ‘5’ for MovieLens) only take a small portion of the overall
ratings, and most ratings concentrate around the global mean (what
we refer to as the head of the rating distribution).

Figure 1 (b) shows the distributions of predicted ratings byMatrix
Factorization (blue) and Neural Collaborative Filtering (yellow).
Predicted ratings byMF are normally distributed with ameanwhich
is close to the global means in the training dataset. Regardless of
the number of tail ratings in the ground truth, very few ratings
are predicted around the tails. Similarly, results using the NCF
are slightly better with respect to the data distribution, and the
mean is slightly off-centered of the global mean. However, similar
to what we observed for MF, the predicted ratings by NCF are
mostly concentrated around the head of the distribution, with very
few ratings predicted around the tails. These observations show
how tail ratings are more likely to be under-served by traditional
methods that rely on a single latent representation. Due to the high
global mean, low tail ratings are most likely over-estimated by such
current methods.

Figure 1 (c) demonstrates the prediction errors (RMSE) for the
ground truth ratings in our test set. As we can see, the predictions
are extremely poor for tail ratings for both MF and NCF. For in-
stance, in the Amazon Books dataset, all ratings of ‘1’, which are far
from the global mean 4.09, have much worse prediction error (by
both MF and NCF) than ratings ‘3’, ‘4’, and ‘5’, which are closer to
the global mean. Similar situations are evident for the other datasets

Controversial
Items

Polarized
Ratings

Rating
Percentage

Amazon Books 128 1,393 0.810%
Amazon Digital Music 11 67 0.104%
Amazon Kindle 233 1,589 0.162%
Amazon CD & Vinyl 362 4,650 0.424%
GoodReads 54 752 0.385%
MovieLens 38 99 0.098%

Table 2: Ratings of controversial items in six datasets.

as well. Since SLR-based models primarily under-serve these tail rat-
ings, our goal in the following section is to improve this estimation
by relaxing the single latent representation assumption.

Observations: Polarized Ratings. We further focus on an ex-
treme case of tail ratings: polarized ratings. Polarized ratings can
indicate controversial items; a recommender that mistakenly esti-
mates a high rating for what a user would perceive as a low rating
(or vice versa) can be a serious error particularly in domains like
politics [9, 16]. Following previous work [28], we adopt a variance
threshold, VAR(Ri ) >= 3, to identify items with polarized ratings.
We also ensure that the items have at least a minimum number of
ratings, |Ri |>= 5, leading to the smaller dataset in Table 2.

Focusing on two of the datasets in Figure 2, we see the original
polarized distribution (green bars) of books in the test set. These
distributions are bi-modal, with peaks near to the lowest rating (1)
and the highest rating (5). As before, we estimate the ratings of
the test set using the standard latent factor model in Equation 2
(ignoring NCF for now; the results are similar). The yellow bars in
Figure 2 show the predicted ratings for these polarized books in the
test set. As expected, the predicted ratings fit the uni-modal distri-
bution and are quite distant from the original ground truth ratings.
Most of the ratings on the lower end have been over-predicted into
the range near to the global mean.
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Figure 2: Rating distribution for controversial items in Amazon
Books and Kindle. The actual ratings (green) for these items fit a U-
shape distribution.However, the predicted ratings (yellow) for these
items fit a uni-modal distribution, leading to high prediction errors.

3.2 Limitations of SLR Methods
This data-driven investigation has shown that latent factor models
with a single latent representation assumption perform poorly on
estimating tail ratings, and especially so for items with polarized
ratings. But what is the underlying cause of these errors?

Loss Function Assumes Uni-Modal Data. From a probabilistic
perspective, the prediction model found by latent factor models
like the ones underlying Matrix Factorization and Neural Collabo-
rative Filtering encourages the predicted value F (x |θ ) to be close to
the truth value y, where x is the given feature, and θ denotes the
parameters used in the prediction function. These models typically
use an L2 norm loss function, which is defined as:

LSLR =
N∑
i=1

y − F (x |θ )
2
F (3)

Recall that the task of the model is to find the optimal parameter
set θ using the following function:

θ̂ = arд min
θ

LSLR (4)

Inside the loss function,
y − F (x |θ )

2
F is the L2 norm between

ground truth y and its predicted value F (x |θ ). Similarly, the widely
used evaluation metric, Mean Square Error (MSE), is defined as:

MSE =
1
N

N∑
i=1

y − F (x |θ )
2
F =

1
N
LSLR (5)

Next, we consider a Gaussian distribution, defined as:

p(z |µ,σ 2) = exp ©«−
µ − z

2

2σ 2
ª®¬ (6)

where µ is the mean and σ 2 is the variance. If we let z = F (x |θ ),
where F (x |θ ) is the predicted value for y, let σ 2 = 1, and let µ = ȳ
(ȳ is the mean of data sample), then further apply the loд to both
sides, we arrive at:

logp(F (x |θ )|µ,σ 2) ∝ −
1
2
F (x |θ ) − ȳ

2
F (7)

which is exactly the negative of the L2 norm loss. In other words,
minimizing the L2 loss (or MSE) is equivalent to maximizing the
log-likelihood of a Gaussian. A similar derivation can be used to
show that minimizing the L1 loss – as in mean absolute error (MAE)
– is equivalent to maximizing the log-likelihood of a Laplacian.

Therefore, these traditional loss functions assume that the values
y (the rating data of the original matrixM) come from a uni-modal
distribution. So the observations in the previous section are driven

by this underlying uni-modal distribution assumption. While regu-
larization terms can be added to the loss function to help encourage
the predicted values to deviate from a strict Gaussian distribution,
it is still fundamentally constrained by this uni-modal distribution
assumption. Indeed, any method using the L2 (or L1) norm loss –
as in MF and NCF but also others – will face the same limitation.
Furthermore, since the loss function forces the predicted ratings to
fit a uni-modal distribution, it causes the learned latent factors to
also fit a uni-modal distribution as well.

Predictions are Blurry.Aswe’ve seen in our previous data-driven
investigation, the rating distribution for particular items is not nec-
essarily uni-modal. As a result, SLR-based prediction models can
give rise to a “blurry” problem, which occurs when the distribution
of datay follows a complex distribution, e.g., a bi-modal distribution
as in the polarized rating case for controversial items. In these cases,
the distribution of polarized ratings py may consist of two Gauss-
ian distributions, d1 and d2. But the distribution of the optimized
predicted ratings, pF (x |θ ), will only fit a single uni-modal Gaussian
(d1 + d2)/2. In other words, the predicted ratings tend to be blurry,
which means they are forced to follow the uni-modal Gaussian,
due to the average of d1 and d2 [7]. Hence, the predicted ratings,
pF (x |θ ), using the single-latent-representation-based models have
a uni-modal distribution, even for those items which have complex
distributions, e.g., bi-modal distribution, in the training dataset.

In the context of a latent factor model like MF or NCF, we have
seen that the tail ratings have worse predicted accuracy compared
to ratings near to the global center (recall Figure 1). Now we have
theoretically analyzed why this occurs since SLR-based models are
not distribution sensitive. Regardless of how the ground truth is
distributed, most predicted ratings will be in the range near to the
center, and the count for each predicted range fits the uni-modal
distribution. Most tail ratings will be either over-predicted or under-
predicted, depending on the particular global means.

4 OUR APPROACH: MULTI-LATENT
REPRESENTATION RECOMMENDER

We have experimentally and theoretically analyzed the phenome-
non that ratings which are far from the center have a worse pre-
dicted error using SLR-based methods, especially for items with po-
larized rating distributions. In this section, we aim to overcome the
limitation of single latent representations by proposing a newmethod
which is aware of multi-modal rating distributions. In essence, we
aim to learn multiple latent representations for each item and user.
Our proposed method – MLR – is a neural method with two main
components: a multiple latent representation factorization model
(MLR-MF, refer to Section 4.1) and a gating mechanism to decide
which latent representation is most appropriate (MLP-Gate, refer
to Section 4.2). Together, the entire model is illustrated in Figure 3.

Setup. For a given user-item-rating dataset, our goal is to learn
from the training dataset and well predict the missing ratings whose
ground truth value is far from the global mean. These tail ratings are
typically under-served by traditional methods. Formally speaking,
in a training dataset M with potential rating range [rmin , rmax ]
and global mean µ, we define the threshold variable β = min(|µ −
rmin |, |rmax − µ |). Then we define the tail rating range, T, is [rmin ,
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Figure 3: Overview of MLR: (1) the bottom box shows the embedding layer, where each item and user is represented as two latent vectors, L
and H; (2) the top-left box shows the MLR-MF process to dot product the learned two representations for each side, L and H, respectively;
and (3) the top-right box shows the MLP-Gate process which outputs the probability δui as the gate to control which pair of representations,
pL · qTL or pH · qTH , would be used for the final prediction.

µ − β) if β = |rmax − µ |, otherwise T is (µ + β , rmax ]. Our objective
is to improve the prediction performance in the tail rating range T,
which are primarily under-served by traditional SLR-based models.

4.1 MLR Factorization Model (MLR-MF)
The fundamental principle of our approach is to model each user
and item with multiple representations. For ease of presentation,
we focus on items with bi-modal distributions, so we have two
“avatars”: ILow and IHiдh , and each one has its latent vector as
its representation. The threshold for splitting could be set as the
global mean or the expectation value of all ratings for each item
(or from each user) in the training dataset. Figure 4 shows the
schematic of this idea. Specifically, rather than assuming the dis-
tribution of this item’s ratings fits a uni-modal distribution with
µ ≈ avд, we can instead take advantage of a mixture of Gaussian
distributions N (µ1,σ1) and N (µ2,σ2), which would more accurately
reflect the distribution of the original ratings. The absolute value
of two peaks, l1 and l2, can systematically adjust the importance of
the two representations to describe one item. That is, when an item

Figure 4: An example showing how to split ratings, using two
“avatars” per item. In this case, twoGaussian distributions, N (µ1, σ1)
andN (µ2, σ2), capture the bi-modal distribution for this item,where
µ1 is close to the mean of the lower ratings, whereas µ2 is close to
the mean of the higher ratings.

has ratings with a uni-modal distribution (as in most cases), the
splitting method would lead to l1 ≪ l2 such that N (µ1,σ1) could
have little influence for the majority of ratings but would still be
helpful for tail ratings.

Of course, this bi-modal approach can be extended to consider
3, 4, or more “avatars”, leading to a mixture of multiple Gaussians.
In practice, however, we do find advantages to using two represen-
tations, rather than more. One of the drawbacks of the splitting
process is the split matrix could be sparser than the original one;
thus, there would be a sharp decline of the learning performance
for each split matrix. Another reason to limit the number of mix-
tures is to relax the strain on the gating process (introduced in the
following section) to decide which avatar is the best representation.
Besides, since all our datasets have a quite small rating window
(e.g., 1 to 5), few cases have visible multi-modal distribution.

In ideal conditions, the original matrix M should be automati-
cally split to matrixMLow and matrixMHiдh , where each contains
only higher (or lower) ratings, with a given binary label, I , for dis-
tinguishing whether a given pair (u, i) of the original M should
belong toMLow orMHiдh . Next, by applying a standard SLR-based
method on both new matrices, we could learn two user latent vec-
tors Plow and Phiдh , and two item latent vectors QLow and QHiдh ,
respectively. The ideal predicted rating, r̃ , for a pair (u, i) could be
calculated by:

r̃ui =Iui × (puL · qTiL) + (1 − Iui ) × (puH · qTiH ) (8)

meaning that, ideally, for a given user u and item i , if we know
Iui , the side (low or high) the predicted rating belongs on, then
we could easily choose the rui = puL · qTiL or rui = puH · qTiH .
Experimental results (see Figure 5) show this ideal case can lead
to an improvement in 55% of RMSE in average over the traditional
latent factor model on all datasets.
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Figure 5: Ideal predicted ratings using two latent representations for
both users and items, adopting the ground truth Iui instead of the
learned probability δui for final prediction.

4.2 Gating Mechanism (MLP-Gate)
However, this information, I , is not known in the test dataset. There-
fore, we propose to build a Gated Multi-Layer-Perceptron (MLP-
Gate) to learn the gate variable δ and let it control which side (low or
high) the predicted ratings should belong to. Similar to Equation 2,
the final predicted rating matrix, R̂, is calculated as follows:

R̂ =δ × (PL ·QT
L + bI L + bU L + µL)+

(1 − δ ) × (PH ·QT
H + bIH + bUH + µH )

(9)

where bU L & bUH are user bias, bI L & bIH are item bias, and µL &
µH are global means forMLow andMHiдh , respectively.

The ground truth label of δ is given when we split the original
matrix to two, i.e. I . Here we build a sub-model, using the learned
latent representations of users (PL and PH ) and items (IL and IH ),
to learn the δ for each given user-item pair.

From the bottom of Figure 3, in the MLR-MF learning part, each
user (or item) has two latent factors, i.e. pL and pH (or qL and qH
for an item). It is intuitive to combine the user feature and item
feature in the same side together by concatenatingMLP_L_1 and
MLP_H_1. A similar design has been widely used in other neural
recommenders [14, 34, 38]. For these two concatenated layers, we
add the hidden layers and use a traditional Multi-layer-perceptron
(MLP) to learn the interaction between user and item vectors in each
side. We choose a Leaky_Relu as the activation function in each
hidden layer. The last layer of the MLP process is namedMLP_L_X
andMLP_H_X , respectively.

Here, we also adopt the pre-trained latent factor, PMF and QMF ,
by traditional SLR models. We employ the element-wise product
into these two pre-trained latent factors, and concatenateMLP_L_X
and MLP_H_X together, to constitute the combined layer MLP
Concatenate. Then, we use the siдmoid as the activation function
on MLP Concatenate layer and output the gate probability δ .

4.3 Learning Process
To design the loss function for the MLR, we consider two parts to
monitor the performance. Firstly, we use I to check the predicted
performance for δ , monitored by cross-entropy loss. Secondly, we
use the ground truth rating R to check the predicted performance
for the final predicted rating R̂, by Mean Squared Error (MSE).

Specifically, the loss function LMLR−MF for this MLR-MF sub-
model is defined below:

LMLR−MF =
R − R̂

2
F + λ1 × (

U 2
F +

IL2
F +

IH 2
F

+
bu2

F +
biL2

F +
biH 2

F )
(10)

where:
- R: ground truth rating matrix;
- R̂: predicted rating matrix by Equation 9;
- λ1: hyper-parameter controlling regularization terms for MF.

The loss function LMLR−MF is identical to the traditional SLR-
based methods. To avoid the blurry problem, we consider adding
the loss for MLP-Gate together. For the part of MLP-Gate, we
choose binary cross-entropy as the loss function. The loss function
LMLR−MLP is defined below:

LMLR−MLP = − (I × log(δ ) + (1 − I ) × log(1 − δ ))

+ λ2 × (
W 2

F +
b2

F )
(11)

where:
- I : ground truth label of input pair (u, i);
- δ : output value of MLP-Gate, the predicted probability of
class of input pair (u, i);

- λ2: hyper-parameter controlling the regularization terms;
- W : All weights in MLP-Gate;
- b: All bias in MLP-Gate.

Up to now, since we learn the MLR-MF and MLP-Gate simulta-
neously, we can combine LMLR−MF and LMLR−MLP as the final
loss, defined as follows:

LMLR = LMLR−MF + α × LMLR−MLP (12)

where α is used for adjusting the contribution of the loss of MLP-
Gate to the total loss. As we demonstrated in Section 3.2, the L2
norm in LMLR−MF forces the generated ratings to be uni-modal,
however, α ×LMLR−MLP could help the model to learn which pair
of the latent factors, pL · qTL or pH · qTH could be finally adopted to
calculate the predicted value, then adjust the predicted ratings to
escape the uni-modal distribution.

In the learning process, we adopt the Adaptive Moment Estima-
tion (Adam) [18] method as the optimizer to train bothMLR-MF and
MLP-Gate, since it yields faster convergence for both sub-models
compared to SGD.

5 EXPERIMENTS
In this section, we evaluate the proposed MLR model over the six
datasets listed in Table 1.We consider four scenarios: (i) an ideal case
to measure the ceiling potential improvement of MLR versus SLR-
based methods; (ii) a comparative study versus eight benchmark
methods for all ratings (both head and tail ratings); (iii) a focused
comparative study on tail ratings only; and (iv) a case study on
items with extreme polarized ratings, as a special case of tail ratings.
We randomly split the ratings of each user into training, validation,
and test sets. 5-fold cross-validation is used in all experiments. All
experimental results shown below are evaluated on the test dataset.

5.1 Ideal Results
First, we evaluate the quality of the multiple-latent-representation
underlying the MLR approach in an idealized scenario. That is,
we assume we have access to the ground truth label, I , from our
validation dataset that determines whether a given pair (u, i) of the
originalM should belong toMLow orMHiдh . In practice, of course,
this label is unavailable to the model, but will give insights into
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NP CoC KNN SlopeOne SVD SVD++ MF NCF MLR

Amazon Books 1.4779 1.0487 1.0424 1.0910 1.0787 1.0639 1.0318 1.0136 0.9893
Amazon Digital Music 1.4115 1.0016 0.9936 1.0585 0.9429 0.9418 0.9292 0.9369 0.9039

Amazon Kindle 1.2265 0.8702 0.8728 0.9106 0.8253 0.8125 0.8084 0.7874 0.7879
Amazon CD & Vinyl 1.3743 1.0142 1.0079 1.0659 0.9810 0.9743 0.9681 0.9597 0.9355

GoodReads 1.3723 0.9734 0.9732 0.9616 0.9469 0.9424 0.9386 0.9353 0.9070
MovieLens 1.4915 0.9864 0.9345 0.9578 0.9397 0.9355 0.9264 0.9346 0.9155

Table 3: Comparing MLR versus eight benchmark methods for all ratings (including both tail and head ratings). Overall, MLR shows a slight
improvement in most cases, but with greater gains specifically among tail ratings (see Table 4).

the ceiling potential of MLR. This scenario corresponds to having a
cross-entropy loss of 0, which is unlikely in practice.

Figure 5 shows the ideal predicted ratings using the multi-latent-
factors representations in two testing datasets as examples. As we
can see, the distributions are better fits for the original distribution
than traditional methods (recall Figure 1), and it can capture the
tail ratings far from the global centers. Overall, the RMSE is 0.5147,
which is a 49.22% improvement from the best benchmark method
(NCF) on the Amazon Books dataset (with an original RMSE =
1.0136). This result encourages us that MLR has a stronger and
more robust representative ability than SLR. From the other per-
spective, the impressive ideal performance indicates that the actual
performance of MLR will strongly depend on the quality of the
gating mechanism in the MLP-Gate portion of the approach. Thus,
the limitation now becomes how the gate δ controls which latent
factors should be used to represent an item or a user.

5.2 Prediction for All Ratings
First of all, we evaluate the performance of the MLR model on
all datasets comparing with other state-of-the-art methods. This
evaluation considers all ratings, so improvements on tail ratings
may be overshadowed by predictions on a large number of head
ratings closer to the mean rating.

For comparison, we choose Normal Predictor (NP) that guesses
a random rating based on the distribution of the training data,
Co-clustering (CoC) [10], KNN, SlopeOne [24], SVD, SVD++ [19],
Neural Collaborative Filtering (NCF), and Matrix Factorization (MF)
with bias as benchmark methods. For our method, we tune the
hyper-parameters in terms of number of hidden layers, number
of neurons of each layer, dimensions of a representative factor,
activation functions, and so on.

We first focus on the comparison of ranking quality. NDCG is
the most popular measure for evaluating the ranking quality in
RS [17]. Figure 6 shows the ranking quality comparison for all
ratings on six datasets. We observed that the ranking performances
are very close among MLR, MF, and NCF, where MLR is slightly
better than MF and NCF on most datasets except Amazon Books.
This result indicates that all these three methods perform well at
ranking the recommended items to users. Again, our objective is
to improve the explicit estimation of ratings. When the ranking
qualities are similar, how good is MLR on accurately predicting
user-item ratings?

Table 3 shows the overall results for all datasets using benchmark
models and MLR. As we can see, MLR results in the best RMSE for
five of the datasets, with a small loss to NCF on one dataset. Overall,
the improvement is fairly small for all ratings, with a maximum
of 3.36% improvement versus MF and 3.51% improvement for NCF.
Since the non-tail ratings dominate in the aggregate, the overall

improvements are small, indicating that MLR at least does not
degrade rating prediction performance relative to baselines.

Figure 6: NDCG Comparison for all ratings on six datasets. MLR is
slightly better than MF and NCF on most datasets.

5.3 Prediction for Tail Ratings
Hence, we next focus solely on the improvement to tail ratings.
Table 4 shows a detailed comparison between the proposed MLR
method versus NCF and MF. For each dataset, we break the pre-
dictions into buckets according to the predicted rating by MF –
so there are predicted ratings from 1-2, 2-3, and so on. The first
three columns show the RMSE for MF, NCF, and MLR. The columns
⇑MLR−MF and ⇑MLR−NCF show the prediction improvements for
MLR versus MF and NCF for each bucket of ratings, respectively.
The column Covered T shows the tail ratings that are covered by
the current rating bucket. Finally, the columns T ⇑MLR−MF and
T ⇑MLR−NCF show the improvement for MLR versus MF and NCF
for each bucket of tail ratings.

We observe that for ratings far from the center, e.g., ratings
less than 3, the overall improvement by MLR is substantial. For
example, for Amazon Books with ratings from 1-2, MLR results in
a 60%+ improvement versus both MF and NCF. For ratings from
2-3, MLR results in a 15%+ improvement versus both alternatives.
Of course, these tail ratings cover a small portion of all ratings,
but the improvements are large. And even for buckets with high
coverage, there are still improvements (e.g., 2.54% and 6.51% for
Amazon Books for rating bucket 3-4). Considering MovieLens, the
tail ratings occur on both sides of the mean rating: we see large
improvements for the low rating bucket 1-2 (e.g., 9% and 14% versus
MF and NCF) and for the high ratings bucket 4-5 (e.g., 1.28% and
4.95% versus MF and NCF).

In some cases, there are some decreases in the predicted tail rat-
ing range near to the global mean in some datasets, e.g., a decrease
of 2.59% on Amazon Books in the predicted range 4 to 5, and a
decrease of 0.03% on MovieLens data in the predicted range 3 to 4,
compared with NCF. In these ranges near the center, the proposed
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Predicted
Range

MF
(RMSE)

NCF
(RMSE)

MLR
(RMSE)

⇑MLR−MF
(%)

⇑MLR−NCF
(%)

Covered T
(%)

T ⇑MLR−MF
(%)

T ⇑MLR−NCF
(%)

Amazon
Books

[1,2) 0.8717 1.0625 0.3366 61.38 68.32 0.01 61.38 68.32
[2,3) 1.5132 1.4256 1.1990 20.76 15.89 1.66 54.76 49.65
[3,4) 1.3294 1.2752 1.2428 6.51 2.54 70.44 23.46 15.51
[4,5) 0.8595 0.8659 0.8480 1.33 2.06 27.77 0.57 -2.59
>5 0.1818 0.2216 0.1418 22.00 36.0 - - -
All 1.0318 1.0136 0.9893 4.11 2.39 100 15.34 8.74

Movie
Lens

[1,2) 1.0927 1.1561 0.9936 9.07 14.05 3.29 17.52 26.39
[2,3) 1.0372 1.0532 1.0135 2.28 3.76 50.18 8.96 15.53
[3,4) 0.9053 0.9083 0.8996 0.63 0.95 45.74 0.74 -0.03
[4,5) 0.7612 0.7907 0.7515 1.28 4.95 0.79 2.73 2.54
>5 0.8928 0.9737 0.7830 12.29 19.58 - - -
All 0.9264 0.9346 0.9155 1.17 2.04 100 3.04 6.16

Amazon
Kindle

[1,2) 1.6149 1.3267 1.1774 27.08 11.25 0.49 86.31 25.83
[2,3) 1.3148 1.200 1.1962 9.01 0.34 8.81 18.36 28.14
[3,4) 1.1055 1.068 1.0734 2.91 -0.50 59.52 13.60 11.54
[4,5) 0.7116 0.7029 0.7024 1.29 0.06 30.70 3.57 1.69
>5 0.4368 0.3764 0.3598 17.61 4.40 0.47 18.33 6.00
All 0.8084 0.7874 0.7879 2.53 -0.01 100 8.93 7.43

CD &
Vinyl

[1,2) 0.7149 1.3280 0.6660 6.84 49.85 0.03 47.70 45.29
[2,3) 1.5414 1.6074 1.1281 26.81 29.81 2.34 48.05 50.76
[3,4) 1.3702 1.3464 1.2804 6.54 4.90 47.14 22.12 19.78
[4,5) 0.8755 0.8708 0.8597 1.80 1.27 50.46 5.22 2.88
>5 0.2337 0.2592 0.2166 7.31 16.42 0.01 3.74 2.10
All 0.9681 0.9597 0.9355 3.36 2.52 100 11.79 9.50

Good-
Reads

[1,2) - - - - - - - -
[2,3) 1.4382 1.4377 1.2134 15.62 15.59 1.90 39.62 39.35
[3,4) 1.0570 1.0503 1.0253 3.00 2.38 82.10 10.81 8.96
[4,5) 0.7992 0.8043 0.7729 3.90 3.30 15.99 -2.98 -4.33
>5 0.3079 0.2911 0.3098 0.61 6.42 - - -
All 0.9368 0.9353 0.9070 3.18 3.02 100 7.88 6.14

Digital
Music

[1,2) 0.7059 1.7798 0.7468 -5.8 58.03 0.46 -5.8 58.03
[2,3) 1.4220 1.5920 1.2855 9.59 19.25 10.14 31.42 44.18
[3,4) 1.2610 1.2709 1.2134 3.77 4.52 56.68 17.19 14.88
[4,5) 0.7974 0.7981 0.7845 1.62 1.70 32.71 1.73 1.19
>5 0.2712 0.2915 0.2766 -1.99 5.11 - - -
All 0.9292 0.9369 0.9039 2.72 3.51 100 9.40 11.51

Table 4: Comparing MLR with single latent factor models MF and NCF for different rating ranges as predicted by MF. For ratings predicted by
MF and NCF, those farther from the global mean, the improvement (in the columns ⇑MLR−MF and ⇑MLR−NCF ) by MLR is more pronounced,
especially for tail ratings (in the columns T ⇑MLR−MF and T ⇑MLR−NCF ). ‘-’ indicates there is no predicted data in the current range by MF.

MLR approach may perform worse than traditional methods since
these methods predict most ratings in this range, but MLR does
not. As a result, the gating mechanism that guides δ may lead to
mispredictions.

Figure 7: Distribution of real (blue) and predicted (green by MF and
red by MLR) ratings for two datasets. Compared with the predicted
ratings by MF (green), the predicted ratings by MLR (red) fit more
accurately to the actual ratings.

For a more detailed look, Figure 7 shows the distributions of
predicted ratings by MLR versus MF, as well as the ground truth
ratings for Amazon Digital Music and Kindle datasets. As we can
see, rather than predicting most ratings near to the global mean,

the MLR approach better fits the original distribution of the ground
truth data, and overcomes the uni-modal distribution limitation.
Overall, we observe that our prediction model performs better on
the tail ratings.

5.4 Prediction for Controversial Items
Finally, we consider a special case of tail ratings for controversial
items with low polarized ratings. Specifically, we consider ratings of
1 or 2, which are over-estimated by traditional methods. Therefore,
we apply the MLR model on the controversial items in three of the
datasets with sufficient items. Table 5 shows the predicted perfor-
mance on the low-polarized ratings (1 or 2) of the controversial
items. The results are strong, where MLR improves the prediction of
polarized ratings by 17.02%, 17.87%, and 15.48% on Amazon Books,
Amazon Kindle, and Amazon CD & Vinyl dataset, respectively,
compared with the MF method.

6 CONCLUSION
In this paper, we conduct a data-driven investigation and theoretical
analysis of the challenges posed by traditional latent factor models
for estimating tail ratings. These approaches assume a single latent
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Amazon
Books

Amazon
Kindle

Amazon
CD & Vinyl

MF (RMSE) 1.97115 1.76308 1.88167
MF (RMSE) 1.89232 1.65243 1.79345
MLR (RMSE) 1.63559 1.44794 1.59031
⇑MLR−MF 17.02% 17.87% 15.48%
⇑MLR−NCF 13.57% 12.38% 11.33%

Table 5: Comparing MLR versus baselines for controversial items.

representation, which can lead to over- and under-estimations of
tail ratings, with particularly pronounced errors on controversial
items.With these challenges inmind, we propose a newmulti-latent
representation method designed specifically to estimate these tail
ratings better. Experimental results show the estimation improve-
ment is especially strong for those items far from the ratings mean.
Furthermore, the proposed model is generalizable and can be easily
extended to take advantage of other SLR-based models.

In our future work, we are eager to explore the impact of in-
corporating additional side information into the MLR approach,
particularly in the gating mechanism. This part of the model is
critical to the overall success of the approach. Additional evidence
like user profiles, temporal behaviors, and others could lead to even
better estimation of tail ratings.
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