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ABSTRACT
Predicting the potential target customers for a product is essen-
tial. However, traditional recommender systems typically aim to
optimize an engagement metric without considering the overall dis-
tribution of target customers, thereby leading to serious distortion
problems. In this paper, we conduct a data-driven study to reveal
several distortions that arise from conventional recommenders.
Toward overcoming these issues, we propose a target customer
re-ranking algorithm to adjust the population distribution and com-
position in the Top-k target customers of an item while maintaining
recommendation quality. By applying this proposed algorithm onto
a real-world dataset, we find the proposed method can effectively
make the class distribution of items’ target customers close to the
desired distribution, thereby mitigating distortion.
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1 INTRODUCTION
Predicting the potential target customers for a product is essential.
Accurate analysis and prediction of the population distribution of
target customers for an item (e.g., a product or an advertisement)
could directly improve the item’s business prospects. One key factor
in targeting is the class distribution of target customers. For example,
an advertising campaign may wish to guarantee at least a certain
demographic (e.g., 18-35) sees its ads. Or a job posting may wish to
guarantee that an equal number of women and men are targeted.

This focus on the overall distribution and composition of an
item’s target customers is often in opposition to the criteria driv-
ing personalized recommenders, which typically aim to optimize
an engagement metric without considering the overall distribu-
tion of target customers. For example, recommendation algorithms
such as Probabilistic Matrix Factorization (PMF) [19], Bayesian Per-
sonalized Ranking (BPR) [20], and Neural Collaborative Filtering
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(NCF) [11], are designed to optimize for metrics based on user-item
interactions like mean average precision, NDCG, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 or
𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 . However, these approaches typically do not consider the
distribution of target customers.

To illustrate, consider a media-service provider that recommends
movies to their users. From the perspective of each movie, what
customers will be considered first as the targets to receive the
recommendation? One intuitive answer is that the target customers
should be the ones who are most potentially interested in this
item. There are many approaches to recommend items to users
based on past user-item interactions. Suppose at the end, based on
the predicted recommendation results, we have a target customer
set that receives the recommendation of item 𝑖 . We use 𝑞 as the
class (such as gender, age, or occupation) distribution of target
customers for item 𝑖 . By relying on a recommender that does not
consider the distribution of target customers, consider the following
distortions that may arise (and that we verify do arise in our data-
driven analysis in this paper):
Distortion 1: the target distribution 𝑞 may be dominated by
the overall class distribution. For example, suppose the male-
female ratio of users in the entire customer base is 70%:30%. For
each movie, the set of recommended users always contains more
males than females, even though some movies may be individually
preferred by females.
Distortion 2: the target distribution 𝑞 for minority classes
may be under-recommended for majority-preferred items.
For example, suppose movie 𝑖 is a male-preferred movie, and the
male-female ratio of users who have already watched movie 𝑖 is
90%:10%. There will be fewer females (even much less than 10%) in
𝑖’s predicted target customers.
Distortion 3: the target distribution 𝑞may unexpectedly dif-
fer from the appropriate distribution. For example, if 𝑖 is an
R-rated movie, the predicted target customer set may include a
great number of children using conventional recommenders.

In this paper, we focus on these types of target customer distor-
tion problems, where the distribution and composition of target
customers differ much from the desired ones, that arise in recom-
menders. Recent research has examined related issues in the dis-
tribution challenge from the user’s perspective through calibrated
recommendations, to ensure that users are exposed to a diverse rec-
ommended list of items [22]. However, there is a gap in viewing this
distribution challenge from the item’s perspective. That is, what is
the distribution of customers that are targeted for each item?

Concretely, we first introduce an approach to identify the target
customers for each item (Section 3), which is challenging since rec-
ommenders are typically structured to reveal what each user prefers
(rather than what users are targeted by each item). We conduct a
data-driven study in Section 4 to reveal several distortions that arise
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from conventional recommenders. Toward overcoming these issues,
in Section 5, we propose a target customer re-ranking algorithm
to adjust the population distribution and composition in the Top-k
target customers of an item while maintaining recommendation
quality. Next, in Section 6, we apply this proposed algorithm onto
the MovieLens 1M dataset [10], and evaluate the distribution of
users and the quality of recommendation, then discuss its merits
and drawbacks. Last but not least, we conclude our work and point
out future research opportunities in Section 7.

2 RELATEDWORK
There are many studies in using calibration for dealing with distri-
butional issues that arise in classification settings, e.g., [7, 23, 27]. Re-
cently, Steck proposed calibrated recommendation, which focuses
on the diversity of genres in a user’s recommendation list [22]. Soon
after, Kaya and Bridge compared Steck’s work with intent-aware
recommendations, and proposed a new version of calibration and
three new evaluation metrics [15]. Liu et al. proposed a Fairness-
Aware Re-ranking (FAR) algorithm to balance ranking quality and
borrower-side fairness in microlending, to give borrowers from
different demographic groups a fair chance of being recommended
[18]. These post-processing approaches are all designed from the
viewpoint of users. And most of these efforts pay special attention
to if the recommended items to a user are fair or diverse, rather than
focusing on the overall distribution. Also there are many works
studying the related topics of fairness [3, 13, 16, 25, 26, 28] and
diversity [1, 4, 8, 9, 12, 29] on recommendation.

3 TARGET CUSTOMERS OF ITEMS
To address the target customer distortion problem, we first need to
obtain the target customers of an item predicted by a conventional
recommender system. With these target customers, we could then
identify the distortions that occur.

Given a user setU, an item set I, and a binary user-item inter-
action matrix H ∈ N |U |×|I | (where H𝑢,𝑖 = 1 indicates that user
𝑢 ∈ U has watched movie 𝑖 ∈ I for example), traditional rec-
ommenders output predicted recommendation results which we
represent as a score matrix D ∈ R |U |×|I | . Each valueD𝑖, 𝑗 expresses
the predicted score from user 𝑢 ∈ U to item 𝑖 ∈ I.

To obtain the Top-k recommended items for user 𝑢, we can
return the first 𝑘 items with the largest predicted score in row D𝑢,_,
calculated as follows (↘ symbolizes descending sort):

𝑡𝑜𝑝U (𝑢,𝑘) = arg sort
↘,𝑘

〈D𝑢,1,D𝑢,2, ...,D𝑢,|𝐼 |, 〉 (1)

A straightforward idea is using the same way to obtain the Top-k
predicted target customers of an item, directly from the score matrix
D. However, by leveraging the conventional personalized recom-
menders, e.g., [2, 6, 11, 20, 21, 24], we cannot directly compare the
predicted scores in a column (for one item) in the score matrix, due
to the different users’ bias. That is, for example, a higher predicted
score for user-item pair (𝑢1, 𝑖) does not necessarily indicate that 𝑢1
likes item 𝑖 more than another user 𝑢2 who has a lower predicted
score for 𝑖 , because 𝑢1 and 𝑢2 may have different scoring scales.

Therefore, to obtain the Top-k predicted target customers of an
item, we should first normalizeD column-wise. Instead of using the
predicted value, we normalize D using the rank information from a

user to an item. We map each value D𝑢,𝑖 to its descending rank
order in the row D𝑢,_, and define a ranking matrix R ∈ N |U |×|I |
mapping scores to ranks from D. For example, if a row in D is
〈0.9, 0.3, 0.6〉, the mapped row in R should be 〈1, 3, 2〉. Values of R
are integers between 1 to |I |.

On the one hand, from the user’s perspective, each value of the
ranking matrix, R𝑢,𝑖 represents 𝑢’s preference rank to 𝑖 among all
items. Therefore, the Top-k recommended items for a user 𝑢 could
also be represented as follows (↗ symbolizes ascending sort):

𝑡𝑜𝑝U (𝑢,𝑘) = arg sort
↗,𝑘

〈R𝑢,1,R𝑢,2, ...,R𝑢,|𝐼 | 〉 (2)

On the other hand, from the item’s perspective, each value of the
ranking matrix, R𝑢,𝑖 , represents the preference degree from user 𝑢
to this item 𝑖 among all users. Target customers are the users who
are most potentially interested in an item (with highest preference
degree). Now, the Top-k target customers for an item 𝑖 could be
represented as:

𝑡𝑜𝑝I (𝑖, 𝑘) = arg sort
↗,𝑘

〈R1,𝑖 ,R2,𝑖 , ...,R|𝑈 |,𝑖 〉 (3)

Furthermore, we know each row, R𝑢,_, represents the preference
ranking given from a user 𝑢 to each item 𝑖 ∈ I. Suppose values
in the originally predicted recommendation matrix D are different
from one another, and the values in R𝑢,_ must be from 1 to |I |.
However, if we vertically observe R, we can find the values in
column R_,𝑖 may be identical to one another, and the value range
is not necessarily from 1 to user size |U|. For instance, assuming
there is a trendy item 𝑖ℎ𝑜𝑡 which has been set as many users’ first
priority, so that the column R_,𝑖ℎ𝑜𝑡 should contain many “1s” and
the average (or median) of R_,𝑖ℎ𝑜𝑡 could be much less than a column
for an unpopular item. Keeping this observation in mind, we will
focus not only on all item’s class distribution but also on popular
items.

4 DATA-DRIVEN STUDY
In this section, we focus on three examples from a real-world
dataset, and observe the distortion between the desired class distri-
bution (denoted as 𝑝) and the class distribution of predicted Top-k
target customers (denoted as 𝑞) for an item.

4.1 Dataset
We adopt the MovieLens 1M dataset [10], which contains 1 million
user-movie interactions collected from 6,040 users (U) and 3,706
movies (I). We only consider user-item interactions rather than the
explicit ratings, i.e. all interacted user-movie pairs will be considered
as 1. In addition, for each user, this dataset contains user profile
information, including age, gender, and occupation, which could
help us to analyze the class distribution of the audience. We now
start from gender and age as the concerned demographic classes in
the beginning to identify the three distortions from Section 1.

For clarity in presentation, we adopt Bayesian Personalized Rank-
ing (BPR) [20], one of the most influential and foundational per-
sonalized recommender algorithms. Experiments with other tested
algorithms show similar results; our emphasis here is on the gen-
eral problem of target customer distortion that can manifest in
recommenders that optimize for engagement metrics without con-
sideration of the overall item target distribution. We apply BPR
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Figure (1) The female ratio on some female-preferredmovies. The
dotted red line is the female ratio of the entire dataset.

Figure (2) The female ratio on some male-preferred movies. The
dotted red line is the female ratio of the entire dataset.

and obtain the predicted user-item interaction matrix D. Through
the transformations introduced in Section 3, we find the predicted
target customers for each item. In the following analysis, we would
like to observe the class distribution of the Top-k target customers,
𝑡𝑜𝑝I (𝑖, 𝑘), of certain items. Intuitively, we expect the predicted class
distribution 𝑞 of target customers to match the distribution 𝑝 of
existing users in the training set of an item. To this end, we sort
all users who interacted with an item by their timestamps. Next,
for each item, we select the first 60% interactions as the training
set and randomly select half of the rest data as validation set (20%),
then, use the remaining 20% as the test dataset.

4.2 Examples of Target Customer Distortion
Intuitively, we expect that the desired class distribution 𝑝 and the
class distribution 𝑞 should be as similar as possible. However, fol-
lowing the three distortions in Section 1 we find there is a strong
disagreement between the two distributions in many cases:

Case 1: Fewer females are the target customers of female-preferred
movies. Figure 1 shows the gender distribution of 5 female-preferred
movies in their training set (𝑝 , blue bar), and corresponding distri-
bution in their Top-k predicted target customer set (𝑞, bars with
other colors). We observe that even though in the training set, fe-
males have much more interactions than males with these movies,
the predicted target customers still contain more males than fe-
males, and for all settings of the Top-K target customers. One of the
reasons is due to the overall smaller ratio (0.29) of females in the
entire training set (dotted red line). In this example of distortion,
the recommender under-serves a large target customer group (in
this case, females).

Case 2: Few females are the target customers of male-preferred movies.
Figure 2 shows the gender distribution of fivemale-preferredmovies
in the training set and Top-k target customer set. The historical
training data show more males interacted with these movies than
females. In this case, it is expected that fewer females may be
included in the target customers set. But, this does not mean the
recommender should ignore females in their Top-K target customer
set. In fact, even though females do watch these movies, however, in
the predicted result, there are few females in the Top-5 and Top-10.

Figure (3) The ratio of children on some R-rated movies. The dot-
ted red line is the child ratio of the entire dataset.

Although this situation is relaxed when we select more candidates
as target customers, the ratio of females is still much lower than
the desired one. In this example of distortion, the recommender
under-serves a small-size class (in this case, female), or sometimes
ignores them completely. A similar phenomenon has also been
analyzed in Steck’s research from the user perspective [22]: some
genres with a small portion will be less recommended to a user.

Case 3: Children are target customers of R-rated movies. Figure 3
shows the ratio of children (age under 18) for five R-rated movies.
Although the R-rated movie should not be targeted to children
under 18-years-old, we still observe some cases in our training
set. As shown in Figure 3, the recommender includes a substantial
portion of children as target customers of R-rated movies. One of
the hypotheses of the phenomena shown in Case 1 and 2 is due
to the female ratio (0.29) over the entire dataset being lower than
males (0.71). However, the phenomenon of predicting more children
as target customers of R-rated movies surprisingly violates the
aforementioned hypothesis. That is, in the entire dataset the ratio of
children (age under 18) is only around 0.04, but the predicted ratio of
children in target customers of R-rated movies are much more than
that. From this case, we can observe that in some cases conventional
recommenders may over-serve a tiny class (i.e., children).

5 TARGET CUSTOMER RE-RANKING
In Section 4.2, we have shown the predicted class distribution of
target customers (𝑞) strongly disagrees with the expected one (𝑝)
recommended by using a conventional recommender. Intuitively,
one potential solution for these issues is to re-generate the Top-k
predicted target customers set to make the class distribution of
target customers for an item fit the desired distribution. In many
cases, it may be reasonable to set the desired distribution 𝑝(𝑜 |𝑖)
as the class distribution in the training set. Furthermore, there
may be some special cases where we wish to manually control the
distribution 𝑝(𝑜 |𝑖), e.g., setting 𝑝(𝑜 = 𝑐ℎ𝑖𝑙𝑑 |𝑖𝑅−𝑟𝑎𝑡𝑒𝑑 ) = 0 to limit
children from being recommended R-rated movies.

Problem Statement: Given a predicted item-user interaction
ranking matrix R by a conventional recommender, a concerned
class 𝑜 (e.g., gender or age), and the desired class distribution 𝑝(𝑜 |𝑖),
we aim to make the class distribution of predicted target customers,
𝑞(𝑜 |𝑖), be as similar as 𝑝(𝑜 |𝑖) through a re-ranking process, while
maintaining the original recommendation performance.

As many recommenders are trained in a pairwise manner, many
studies state that one might not be able to include calibration into
the training [22]. Therefore, a common solution is re-ranking the
predicted list in a post-processing step, which has been widely
used in calibrated machine learning approaches [7, 22, 27]. In this
section, we propose a post-processing approach for target customer
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Figure (4) Target customer re-ranking algorithm: (1) from score matrix D predicted by a conventional recommender, generate the original
ranking matrix R; (2) from R generate the Top-k recommended item set 𝑡𝑜𝑝U (𝑢,𝑘) for each user for later evaluation; (3) from R generate the
Top-k target customer set 𝑡𝑜𝑝I (𝑖, 𝑘) for each item as well as the memory matrix M; (4) re-rank the Top-k target customer set and generate a
new target customer matrix T𝑖 = 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, |U |) and evaluate the distribution 𝐾𝐿(𝑝 | |𝑞) through comparing 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, 𝑘) and 𝑡𝑜𝑝I (𝑖, 𝑘); (5) from
T and M generate the new ranking matrix R𝑛𝑒𝑤 ; (6) from R𝑛𝑒𝑤 generate the new Top-k recommended item set 𝑡𝑜𝑝U𝑛𝑒𝑤 (𝑢,𝑘); and (7) evaluate
the recommendation by comparing 𝑡𝑜𝑝U𝑛𝑒𝑤 (𝑢,𝑘) and 𝑡𝑜𝑝U (𝑢,𝑘).

re-ranking to make the class distribution of target customers of
each item as close as the desired class distribution.

5.1 Class Distribution
Wehave introduced how to get the Top-k predicted target customers
for each item 𝑖 , 𝑡𝑜𝑝𝐼 (𝑖, 𝑘), from the rankingmatrix R (refer to Section
3). From the user set 𝑡𝑜𝑝𝐼 (𝑖, 𝑘), we can now analyze the Top-k target
customer’s class distribution, such as gender and age. Given 𝑜 as
the class of interest, where 𝑜 could represent gender or age range
(or other domain-specific class of interest), we denote for each valid
value 𝑐 for 𝑜 , the desired class distribution 𝑝(𝑜 = 𝑐 |𝑖) for item 𝑖 as:

𝑝(𝑜 = 𝑐 |𝑖) =
∑
𝑢∈U 𝜔𝑢,𝑖 × 𝑝(𝑜 = 𝑐 |𝑢)∑

𝑢∈U 𝜔𝑢,𝑖
(4)

where 𝑝(𝑜 = 𝑐 |𝑢) and 𝜔𝑢,𝑖 are two binary variables: 𝑝(𝑜 = 𝑐 |𝑢) is 1 if
𝑢 belongs to 𝑐 , and𝜔𝑢,𝑖 is 1 if user𝑢 watched movie 𝑖 in the training
dataset, respectively. When 𝑜 represents gender, we assume given
a movie 𝑖 , the probability 𝑝(𝑜 =𝑚𝑎𝑙𝑒 |𝑖) is the ratio of males to all
people who watched this movie, and 𝑝(𝑜 = 𝑓 𝑒𝑚𝑎𝑙𝑒 |𝑖) is the ratio
of females, supposing for simplicity in presentation here that𝑚𝑎𝑙𝑒
and 𝑓 𝑒𝑚𝑎𝑙𝑒 are mutually exclusive. For a given historical matrix H,
the desired class distribution 𝑝(𝑜 |𝑖) could be a fixed number (ratio)
based on the historic interaction record. In some special occasions,
𝑝(𝑜 |𝑖) could also be manually set as a desired number, for example,
we could set 𝑝(𝑜 = 𝑐ℎ𝑖𝑙𝑑)|𝑖𝑅−𝑟𝑎𝑡𝑒𝑑 ) = 0 to expect that all children
(age under 18) should not be recommended R-rated movies.

Similarly, we could calculate the predicted class distribution,𝑞(𝑜 |𝑖),
of predicted Top-k target customers 𝑡𝑜𝑝𝐼 (𝑖, 𝑘) for item 𝑖 as follows:

𝑞(𝑜 |𝑖) =
∑
𝑢∈𝑡𝑜𝑝𝐼 (𝑖,𝑘) 𝑝(𝑜 |𝑢)

𝑘
. (5)

Ideally, we expect the predicted class distribution 𝑞(𝑜 |𝑖) to be as
similar as the desired class distribution 𝑝(𝑜 |𝑖). Otherwise, if 𝑞(𝑜 |𝑖)
is quite different from 𝑝(𝑜 |𝑖), then we will have identified a target
customer distortion. In most of the cases, we expect the desired
distribution 𝑝(𝑜 |𝑖) is the historical distribution of existing users for
an item 𝑖 , as calculated in Eq. 4. We also allow manually setting 𝑝
in some cases. For example, as in the third case in Section 4, some

children (age under 18) watched the R-rated in our training dataset
so that the distribution of 𝑝(𝑜 = 𝑐ℎ𝑖𝑙𝑑 |𝑖) ≥ 0 for R-rated movie 𝑖 .
Even though, we still could manually force 𝑝(𝑜 = 𝑐ℎ𝑖𝑙𝑑 |𝑖) = 0 to
avoid recommending R-rated movie 𝑖 to children by ranking all
children in the very back of the potential relative user list of 𝑖 .

To compare the similarity/distance between two distributions
𝑝(𝑜 |𝑖) and 𝑞(𝑜 |𝑖), we use the Kullback-Leibler (KL) divergence [17]
as the metric, where 𝐾𝐿(𝑝 | |𝑞) = 0 indicates the distributions 𝑝(𝑜 |𝑖)
and 𝑞(𝑜 |𝑖) are exactly the same; and 𝐾𝐿(𝑝 | |𝑞) = 1 indicates they are
completely opposite.

5.2 KL-weighted Top-k Target Customers
In Section 3, we showed how to get the Top-k predicted target
customers 𝑡𝑜𝑝I (𝑖, 𝑘) from the ranking matrix R. To memorize the
preference priority from each user 𝑢 ∈ 𝑡𝑜𝑝I (𝑖, |U|) to item 𝑖 , we
introduce a memory matrix M ∈ N |I |×|U | :

M𝑖 = sort
↗
〈R1,𝑖 ,R2,𝑖 , ...,R|U|,𝑖 , 〉 (6)

recalling that R(𝑢,𝑖) is the rank of item 𝑖 in user 𝑢’s priority list.
To re-rank the Top-k most likely target customers and let the

class distribution of target customers𝑞 to fit our desired distribution
𝑝 , we leverage maximum marginal relevance (MMR), which can
provide precise re-ranking results [5]. We store these re-ranked
results into the new target customers matrix T ∈ N |U |×|I | , so that
the newTop-k predicted target customers for item 𝑖 , i.e., 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, 𝑘),
is the first 𝑘 elements (users) in 𝑖𝑡ℎ column of T. We could obtain
the optimized new target customer set, T𝑖 , for item 𝑖 as follows:

T𝑖 = argmax
C𝑖⊆𝑡𝑜𝑝I (𝑖,|U|)

(1 − _) × 𝑟 (C𝑖 ) − _ ×𝐾𝐿(𝑝 | |𝑞(C𝑖 )) (7)

where _ ∈ [0, 1] is the trade-off between the original recommenda-
tion results and the distribution metric, C is the current optimal
subset of re-ranked target customers, and recommendation score
𝑟 (C) is calculated from the ranking (priority) of user 𝑢 ∈ C in item
𝑖’s original target customers list:

𝑟 (C𝑖 ) =
1
|C𝑖 |

©«
∑
𝑢∈C𝑖

1
R𝑢,𝑖 + 1

ª®¬ (8)
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(a) All items (b) Popular items

Figure (5) 𝐾𝐿(𝑝 | |𝑞) of class distributions of target customers after applying the target customer re-ranking algorithm.

Through the re-ranking process, a user’s ID can be stored in a
column T𝑖 per step, from top to bottom.

5.3 Top-𝑍 Selection Mechanism
To add each user into T𝑖 , a traditional re-ranking method would go
through the entire original target customer list, 𝑡𝑜𝑝I (𝑖, |U|) with
size of |U|), then select the one with the most optimal KL-weighted
score. To save running time and maintain prediction quality, instead
of going through the entire list of 𝑡𝑜𝑝I (𝑖, |U|), we only consider
the Top-𝑍 users in 𝑡𝑜𝑝I (𝑖, |U|); in our experiments, we set 𝑍 as 30
times the number of valid values for 𝑜 (e.g., 𝑍 = 60 for 𝑜 = 𝐺𝑒𝑛𝑑𝑒𝑟 ).

The benefits of only selecting from Top-𝑍 users in the current
𝑡𝑜𝑝I (𝑖, 𝑍 ) rather than the entire user set are not only significantly
speeding processing time (𝑍 � |U|), but also further ensuring rec-
ommendation quality. That is, we need not engage our re-ranking
algorithm to choose the user in the bottom of 𝑡𝑜𝑝I (𝑖, |U|), although
it may slightly improve 𝐾𝐿(𝑝 | |𝑞).

5.4 Rebuild the Rank Matrix for Users
In Section 3, we introduced how to transform D→ R→ 𝑡𝑜𝑝I (𝑖, 𝑘).
As every step is a linear transformation, the entire process can be
reversed. That means from the re-ranked target customers matrix
T where T𝑖 = 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, |U|), we could reverse the process through
T → R𝑛𝑒𝑤 and generate the new version of the ranking matrix
R𝑛𝑒𝑤 . Specifically, leveraging the re-ranked target customer ma-
trix T and the original memory matrixM, we could build the new
ranking matrix R𝑛𝑒𝑤 by:

R𝑛𝑒𝑤𝑢,𝑖 = M𝑣(where T𝑖,𝑣=𝑢),𝑖 . (9)

In this way, the new Top-K recommended items for a user 𝑢
could be easily calculated by:

𝑡𝑜𝑝U𝑛𝑒𝑤 (𝑢,𝑘) = arg sort
↗,𝑘

〈R𝑛𝑒𝑤𝑢,1 ,R𝑛𝑒𝑤𝑢,2 , ...,R𝑛𝑒𝑤
𝑢,|𝐼 | 〉 (10)

Also, to check the recommendation performance of the re-ranked
matrix R𝑛𝑒𝑤 , we leverage the widely-used evaluation metric, 𝐹 −
1@𝐾 . Through comparing with the original Top-k recommended
items to a user (in R) and the new Top-k recommended items for
the same user (in R𝑛𝑒𝑤 ) after using the proposed target customer
re-ranking algorithm, we can measure the impact on the recom-
mendation results after considering the class distribution of target
customers. To illustrate the workflow of the proposed re-ranking
algorithm, Figure 4 walks step-by-step through a simple example.

6 EXPERIMENTAL RESULTS AND ANALYSIS
In the previous sections, we have identified how the class distribu-
tion of target customers of an item (𝑝) and it’s desired distribution
(𝑞) can be distorted. To address this problem, we proposed a target

customer re-ranking algorithm. In this section, we apply the pro-
posed algorithm onto the MovieLens dataset introduced in Section
4, and evaluate the results from both perspectives of distribution
bias and recommendation accuracy.

To match the result analysis in Section 4, we use BPR as the base
of our target customer re-ranking algorithm. It is important to note
that the proposed algorithm is a post-processing solution which
could be applied upon any conventional recommenders. Here we
use BPR as a representative. We first apply BPR onto our training
dataset, and through the transformation introduced in Section 3
we obtain the Top-k predicted target customers 𝑡𝑜𝑝I (𝑖, 𝑘) for each
user 𝑖 . Through applying the proposed re-ranking approach onto
𝑡𝑜𝑝I (𝑖, 𝑘) we now have the re-ranked new Top-k predicted target
customers 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, 𝑘) for 𝑖 . Furthermore, we can also obtain users’
Top-k recommended items before and after applying the re-ranking
approach, i.e. 𝑡𝑜𝑝U (𝑢, 𝑘) and 𝑡𝑜𝑝U𝑛𝑒𝑤 (𝑢, 𝑘), respectively.

6.1 Bias of Class Distributions of Target
Customers

First of all, we compare the desired class distribution 𝑝 with 𝑡𝑜𝑝I (𝑖, 𝑘)
and 𝑡𝑜𝑝I𝑛𝑒𝑤 (𝑖, 𝑘), respectively. Figure 5a shows the score of the dis-
tribution metric 𝐾𝐿(𝑝 | |𝑞) with different settings of _, in two cases,
i.e., 𝑜 = 𝐺𝑒𝑛𝑑𝑒𝑟 and 𝑜 = 𝐴𝑔𝑒 , for all items. In both cases, we ob-
serve that 𝐾𝐿(𝑝 | |𝑞) decreases with the increase of _. The difference
among these two cases are: comparing with the case of 𝑜 = 𝐺𝑒𝑛𝑑𝑒𝑟 ,
𝐾𝐿(𝑝 | |𝑞) is harder to converge in the case of 𝑜 = 𝐴𝑔𝑒 , and the
𝐾𝐿(𝑝 | |𝑞) is still far from 0 when we set the largest _ in our experi-
ment. This is because we choose the optimal user 𝑢 in the Top-𝑍
candidates of original 𝑡𝑜𝑝I (𝑖, 𝑘) each interaction, instead of the
entire user set. Within an extreme condition, Top-𝑍 candidates do
not contain an optimal choice to improve the current𝐾𝐿(𝑝 | |𝑞). Such
a phenomenon becomes even more evident when 𝑜 contains more
valid values, i.e., there are 7 valid values for Age and 2 valid values
for Gender.

Recalling our Top-𝑍 candidates mechanism, in the case of the
small size of 𝑜 , the Top-𝑍 candidates mechanism performs well
due to the fast processing speed, high recommendation accuracy,
as well as almost unharmed 𝐾𝐿(𝑝 | |𝑞) value. However, as we can
see, with the growing size of 𝑜 , the effect caused by this selection
mechanism to 𝐾𝐿(𝑝 | |𝑞) will be more obvious.

We also observe that,𝐾𝐿(𝑝 | |𝑞)with a smaller𝑘 dropsmore slowly
and quickly to converge with the growth of _, than 𝐾𝐿(𝑝 | |𝑞) with a
larger 𝑘 . This is due to the original ratio of one class in the entire
user set. Given a user set contains 10 females and 90 males and
desired distribution 𝑓

𝑚 = 1
2 , the Top-10 target customers with the
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Figure (6) The adjusted ratios of (a) females on two female-preferred movies, (b) females on two male-preferred movies, and (c) children on
two example R-rated movies before and after re-ranking, in the setting of _ = 0.5. The dashed lines are the corresponding desired 𝑝.

expected distribution should obviously be easier to satisfy than the
Top-100 target customers.

Figure 5b shows 𝐾𝐿 scores of popular items. Here, we define the
popular items as items in users’ Top-k preference list. Comparing
with the class distribution of all items (refer to Figure 5a), similar
downtrends are observed:𝐾𝐿(𝑝 | |𝑞)will decrease with the growth of
_. However, the 𝐾𝐿(𝑝 | |𝑞) is always lower for popular items than the
one for all items, especially when _ is quite small. This observation
indicates that a traditional recommender brings more bias of class
distributions for unpopular items.

Furthermore, Figure 6 shows the re-ranked Top-k target cus-
tomers using our re-ranking algorithm of those exampleswe showed
in Section 4, in the setting of _ = 0.5. It is not surprising that the
re-ranked Top-k target customers fit the desired distribution. A rea-
sonable portion of females are included in to corresponding movie’s
target customer set (refer to Figure 6a and 6b. And no child will
be set as target customers of R-rated movie by setting the desired
distribution 𝑝(𝑜 = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 |𝑖𝑅−𝑟𝑎𝑡𝑒𝑑 ) (refer to Figure 6c).

6.2 Influence of Recommendation Accuracy
Cased by Re-ranking

There is an inherent trade-off between a reasonable class distribu-
tion and an accurate recommendation. We already showed good
results of the class distribution of target customers for an item using
the proposed re-ranking algorithm. Next, we show how recommen-
dation accuracy is affected.

Figure 7 shows the F-1 score of user-viewed Top-k recommenda-
tions after applying the proposed target customer re-ranking algo-
rithm optimized for gender and age class distribution, respectively.
As we can see, in the case of optimizing gender distribution, with
the growth of _, the recommendation accuracy is almost unaffected.

Figure (7) F-1 Score only mildly affected after applying the target
customer re-ranking algorithm.

Taking the benefits of 𝑜 with fewer valid values, the re-ranking is ex-
tremely slight, with little impact on F-1. Some ranking metrics may
be more affected, e.g., NDCG. However, NDCG is not always the
appropriate ranking metric for target customer prediction, because
target customers are usually considered as a group, e.g., group ads
injection [14]. Surprisingly, even in the case of 𝑜 with more valid
values, e.g., age, the recommendation accuracy only drops sightly
by taking the benefit of the Top-𝑍 selection mechanism.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a target customer re-ranking algorithm
for addressing the target customer distortion problem. We have
seen how the method can effectively adjust the class distribution of
the target customers for items toward a desired distribution, thereby
mitigating the distortion problem. In future work, we would like to
design an advanced re-ranking algorithm which can take care of
multiple classes at the same time. That is, supposing 𝑜𝑖 and 𝑜 𝑗 are
not mutually exclusive; for example, considering the gender and
age distribution together, how could we adjust the distribution of
𝑜𝑖 and 𝑜 𝑗 simultaneously to make them close to their own desired
distributions respectively? We would also like to design an end-to-
end recommender system that balances recommendation quality
and target customer distributions simultaneously, as a complement
to the post-processing step introduced here.
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