
TrailMix: An Ensemble Recommender System for Playlist
Curation and Continuation

Xing Zhao, Qingquan Song, James Caverlee, and Xia Hu

Texas A&M University

ABSTRACT
This paper describes TrailMix, an ensemblemodel designed to tackle

the RecSys Challenge 2018 for automatic music playlist continua-

tion. TrailMix combines three different models designed to exploit

complementary aspects of playlist recommendation: (i) CC-Title, a

cluster-based approach for playlist titles; (ii) DNCF, an extension

of Neural Collaborative Filtering for taking advantage of the flat

interaction among tracks; and (iii) C-Tree, a hierarchical approach

akin to Phylogenetic trees for finding relationships between tracks.

KEYWORDS
Recommender System, Playlist Continuation, Constructed Tree

Comparison, Neural Network, Collaborative Filtering

ACM Reference Format:
Xing Zhao, Qingquan Song, James Caverlee, and Xia Hu. 2018. TrailMix:

An Ensemble Recommender System for Playlist Curation and Continuation.

In Proceedings of the ACM Recommender Systems Challenge 2018 (RecSys
Challenge ’18), October 2, 2018, Vancouver, BC, Canada. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3267471.3267479

1 INTRODUCTION
With the popularity of online music streaming service, e.g. Spo-

tify and Pandora, recommender systems have been widely used to

automatically recommend specific tracks, often personalizing per

user or per playlist, e.g., [5, 6, 10, 13, 15, 16]. This year’s RecSys

Challenge builds on this work by focusing on playlist continuation
so that users can create and extend their own playlists. The main

resource is a rich collection of 1 million playlists, including seed

songs, playlist titles, playlist length, among many other features.

In this paper, we present the overarching design of TrailMix, our
team’s ensemble approach to the 2018 RecSys Challenge. TrailMix

combines three different models designed to exploit complementary

aspects of playlist recommendation:

• The first model – CC-Title – exploits and clusters the con-

text information provided by a playlist title alone, with no

knowledge of the component tracks in each playlist;

• The second model – Decorated Neural Collaborative Filter-

ing (DNCF) – takes advantage of the flat interaction among

given tracks by extending the recently introduced NCF [8];

and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6586-4/18/10.

https://doi.org/10.1145/3267471.3267479

Table 1: Dataset Statistics

Items Quantity Proportion

Playlists 1,000,000

unique tracks 2,262,292 100%

unique tracks (freq ≥ 5) 599,341 96.05%

unique tracks (freq ≥ 100) 70,229 80.67%

unique albums 734,684

unique artists 295,860

• Finally, the third model – C-Tree – explores the hierarchi-

cal structures of a playlist (e.g., playlist-artist-album-track)

akin to Phylogenetic trees for finding relationships between

tracks.

Together, Trailmix ensembles these three models toward tackling

the RecSys Challenge. In the following, we briefly describe the

challenge setting and then dive into the details of each approach
1
.

2 DATASET AND EVALUATION
We adopt the large-scale dataset provided by RecSys Challenge

2018. This dataset contains 1 million music playlists created by

Spotify users; each playlist has passed a series of quality filters
2
.

Table 1 shows the basic dataset statistics. There are over 2.2

million unique tracks and 0.29 million unique artists in this dataset.

Considering the sparsity of the playlist-track matrix, we count the

tracks which have a frequency more than a specific threshold and

their related proportions in this dataset. Specifically, as shown in

Figure 1, fewer than 27% of all tracks which appear equal to or more

than 5 times take upmore than 96% of all playlist-track pair samples;

furthermore, around 3% of all tracks which appear 100 times or

more take up more than 80% of all samples. To avoid challenges

of memory and compute time for the long-tail, we focus in the

following on models built over thresholded versions of the original

dataset.

For evaluating recommendation quality, we adopt the standard

metrics, R−precision andNDCG; and the number of refresh actions

needed before a relevant track is encountered, Clicks , defined by

this challenge. More details of the definition and equations can be

found at the workshop overview paper [3].

3 TRAILMIX
In this section, we introduce our three major approaches to this

challenge, plus how we ensemble the results. Since the challenge

is divided into tasks, our hope was to identify models that were

well-suited for particular tasks. For TASK 1 (where only playlist

1
All data, annotated samples, code, and experiments are available at https://github.

com/xing-zhao/RecSys-Challenge-2018-Trailmix

2
More details are shown at https://recsys-challenge.spotify.com/

https://doi.org/10.1145/3267471.3267479
https://doi.org/10.1145/3267471.3267479
https://github.com/xing-zhao/RecSys-Challenge-2018-Trailmix
https://github.com/xing-zhao/RecSys-Challenge-2018-Trailmix
https://recsys-challenge.spotify.com/

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada X. Zhao et al.

Figure 1: Track Statistics of 1 Million Playlist Dataset.

titles are available), we build a model called CC-Title to exploit the

information provided by the given titles. For TASK 2 to 10 (where

playlists tracks are given), we build a pair of models, each designed

tomine the information given by the existing tracks of playlists. The

first – DNCF – takes advantages of the flat interactions of the given

tracks; and the second – C-Tree – seeks to explore the hierarchical

structures of a playlist. In addition, we build an ensemble model for

combining the results of the aforementioned three models and give

the final recommendation.

3.1 CC-Title: Context Clustering using Playlist
Title

The main idea of the model for TASK 1, which provides playlist title

as the only information, is using the context clustering based on a

word-track matrix to recommend the relevant tracks to a specific

word. The non-processed titles consist of words (including many

stop words), punctuation, emoji, etc. First, we use the stemmer

provided by NLTK [2] to pre-process the playlist title, and delete all

punctuation and emojis. Second, to delete stopwords in the playlist

title, we use NLTK stopwords list [2] with some hand-curatedmusic-

related stopwords, such as playlist, music, songs, etc. After this pre-
processing, we have 17,381 unique playlist titles which contain

9,817 unique normalized words. Since there are many playlist titles

consisting of only punctuation, emoji, or stopwords, these titles

will be blank after processing. The total number of playlists with

blank titles is 22,921 out of 1 million.

From a word-track perspective, we have a matrix of size 9, 817 ×
2, 262, 292 to recommend relevant tracks to a specific word. The

number in each cell, C(wi , tj), of this matrix is the frequency of

a track tj in a playlist whose title contains the word wi . We test

many machine learning models on this word-track matrix to find

the latent relationship between each word and track, such as matrix

factorization and content-based collaborative filtering. However,

the performance and time and space complexity were not ideal.

Eventually, we adopt contextual clusters to find the latent rela-

tionship between words. After grouping the words based on their

contained tracks in the word-track matrix, we recommend the most

popular tracks, with the highest frequency, from each contextual

cluster to the playlist. Themain contribution is this simplifiedmodel

can handle the size of the word-track matrix (9, 817 × 2, 262, 292

in our case), resulting in better performance than our other tested

methods. The pseudo code of this model is shown in Algorithm 1.

Algorithm 1 Context Clustering using Playlist Title

1: P : 1 Million Playlist

2: Title: Title of each playlist in P
3: Track : A list of tracks of each playlist in P
4: M : Number of unique words

5: N : Number of unique tracks

6: k : Number of Context Clusters (hyper-parameter)

7: β : A bias power for frequency

8: IDF : The inverse document frequency of all tracks

9: function Build Word-Track Matrix(P , Title , Track , IDF ,
β)

10: C = zerosM×N
11: for playlist p in P do
12: for word w in Title[p] do
13: for track t in Track[p] do
14: C(w, t) += 1

15: C(w, t) = C(w, t)β × IDF [t]
return C

16: function Contextual Clustering(k , C)
17: Cluster = K −Means −Clusterinд(k,C) ▷ objects are

rows in matrix C
18: for sub_cluster ∈ Cluster do
19: for wordw in sub_cluster do
20: sub_cluster += C[w]

return Cluster
21: function Recommendation(Cluster , GivenTitlep)
22: Rp = zeros1×N
23: for word w in GivenTitlep do
24: for all sub_clusterw contained wordw do
25: Rp += sub_clusterw

26: Sort Rp by decreasing order

27: return Rp [: 500] ▷ Top 500 most frequent tracks in Rp

Further note that we adopt an inverse document frequency (IDF)

weighting approach to normalize the number in each cell of the

word-track matrix by using the track’s inverse document frequency

over the entire 1 million list. Since in most cases a track only exists

one time in a playlist, there is no term frequency (TF) component

as in many TF-IDF variations.

3.2 DNCF: Decorated Neural Collaborative
Filtering

Since the remaining tasks provide seed tracks for each playlist,

we could adopt factor-based models which have achieved great

success in multiple recommendation tasks [12]. Most of these ap-

proaches follow the matrix factorization setting, in which users’

preference and items’ features are modeled as latent factors; and

their interactions are constructed as the linear combinations of

these factors. However, existing works have shown that simple

linear combinations are often insufficient to model complex user-

item interactions [8]. This problem could be alleviated by inducing

TrailMix: An Ensemble Recommender System for Playlists RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

deep architectures, which raises considerable discussions in recent

literature [17].

To incorporate these state-of-the-art advances of deep learning

techniques, we propose to adopt the Neural Collaborative Filtering

method (NCF) [8] and modify it with two decorations towards

higher effectiveness and efficiency. There are two reasons that

we chose NCF as our ground model. First, the model structure is

simple and easy to generalize into large-scale settings. Second, it can

leverage implicit negative feedback of users’ preference. Although

NCF requires low memory and space complexity comparing with

other advanced deep frameworks, it is still not practical to directly

apply on the target problem due to the large recommendation (item)

scope and the matrix sparsity. Thus, we propose two modifications

in the training and testing phase respectively to address this issue: (i)

First, we adopt a constrained negative sampling during the training

phase for more targeted training; and (ii) Second, we constrain the

recommendation space and reorder the final 500 predictions with

Word2Vec model during the testing phase towards better prediction.

Details are introduced as follows.

3.2.1 Constrained Negative Sampling. Since there are more than

two million tracks in the whole dataset while each playlist only

contains no more than 250 tracks, the sparsity of the whole playlist-

track matrix is lower than 0.05%. It is challenging for factor-based

models to effectively extract useful implicit negative feedback dur-

ing the training phase since the negative sampling space for each

playlist is too huge to handle with limited time and computational

power. We intuitively constrain the negative sampling space to the

space of the tracks appearing equal to or more than 100 times in

the training data. This constrained negative sampling is equiva-

lent to enlarging the sampling probability of popular samples and

lowering the probability of rarely appearing samples, which has

been shown to be effective in the literature [4, 9]. It is worth noting

that only the negative samples are constrained while the positive

samples remain the whole dataset during training, which protects

the feasible embedding and prediction of all the testing data except

for TASK 1.

3.2.2 Constrained Recommendation with Reordering. As described
in Section 2, the long-tail property of track frequency illustrates

that fewer than 4% of tracks which appear equal to or more than

100 times take up more than 80% of the positive training samples.

It is reasonable to constrain the recommendation space by only

recommending the popular tracks during testing phase towards a

more targeted prediction. Coupledwith the selection of our negative

sampling space, we only recommend tracks appearing 100 times or

more in the training data, which is always shown to be effective

during our evaluation. For each playlist, we rank the prediction

scores of all the tracks appearing equal to or more than 100 times,

which do not appear in its positive training samples, and then

recommend the top 500 tracks denoted as set ϕ
p
1
for playlist p.

To partially encode the rest of the information of the other tracks,

after acquiring the top 500 tracks for each playlist, we adopt an

ensemble trick to reorder these 500 tracks for better performance.

Specifically, we apply Word2Vec model [11] on the training data

and get the embedding vector of each track, and then adopt a three

step construction for each playlist p as follows. Firstly, find the most

Figure 2: An example playlist in the structure of tree

similar 50 tracks of each track, merge these similar tracks together

based on the training tracks of playlist p, and denote this merged set

as ϕ
p
2
. Secondly, directly find the most similar 500 tracks playlist p

and denote it as set ϕ
p
3
. These operations can be easily implemented

with the gensim python package [14]. Finally, we reorder ϕ
p
1
as

follows:

ϕf inal = [L1,L2,L3,L4],
where L1 = ϕ

p
1
∩ϕ

p
2
∩ϕ

p
3
, L2 = ϕ

p
1
∩ϕ

p
3
\L1, L3 = ϕ

p
1
∩ϕ

p
2
\L1, and

L4 = ϕ
p
1
\ (L1∪L2∪L3). The intra-order of tracks in Li (i = 1, 2, 3, 4)

is consistent with their orders in ϕ
p
1
, i.e., if track a and b are both

in Li , a ranks higher than b in Li if a ranks higher than b in ϕ
p
1
.

3.3 C-Tree: Constructed Tree
While DNCF utilizes the flat structure of a playlist to surface the

latent relationships between tracks, can we also treat each playlist

as a hierarchical structure? To complement DNCF, we propose an

alternative model, C-Tree, inspired by the use of phylogenetic trees

widely used in bioinformatics for indicating the ties of consanguin-

ity among taxa[7] [1]. In general, two leaves in the same node are

closer than leaves outside the node, in terms of their latent internal

similarity or connection. Here, we adopt the similar tree structure

to present a playlist because of:

(1) A playlist consists of different tracks, and these tracks always

belong to a specific album of an artist, which indicates a

playlist has a natural tree-structure;

(2) A list of tracks in a specific playlist always have latent simi-

larity, such as genres, style, listening sense, etc., which indi-

cates a playlist is a specific cluster of certain aforementioned

features.

Figure 2 (Ttrain) shows a real example of playlist (pid:11548)

in the 1 million train dataset. This playlist, whose title is ‘pop

punk’, includes 48 pop punk and rock tracks, which belong to 12

albums by 5 artists. In terms of genres and styling, it is obvious that

tracks coming from the same album (or artist), such as Re-Do and
Tears Over Beers from album Sports are closer to each other than

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada X. Zhao et al.

Figure 3: An incomplete playlist contain 5 seed tracks

tracks belonging to different albums (or artists), such as Re-Do (rock
music) from album Sports and Gold Steps (pop punk music) from

album Life’s Not Out To Get You. Another problem we are facing

is that it is hard to determine the distance of two songs crossing

branches in a single tree. For instance, the distance between tracks

of artistModern Baseball should be closer to tracks of artistMayday
Parade (both of them are rock bands), than tracks of artist Neck
Deep (a pop punk band). It is impossible to determine this difference

using a single tree. Fortunately, we have 1 million playlists which

means a huge forest can be utilized for determining the relationship

between each pair of artists, albums or tracks. Through comparing

one playlist with other 1 million playlists, similar tracks (leaves in

the tree) will be clustered into a big branch based on their latent

features, e.g. genres. In this way, when all latent feature surface,

the rock tracks will be closer to each other than to pop punk tracks

in this case, since not every playlist combines pop punk tracks with

rock tracks together.

Next, in the recommending process, we use the seed tracks of a

playlist as a sub-tree (incomplete tree since the playlist is not com-

plete) to compare to 1 million trees in the training forest. Figure 3

(Ttest) shows a sub-tree of a playlist which is selected from the chal-

lenge dataset (pid:1000320). In this incomplete playlist, there are 5

seed tracks, and 3 of them exist in the training complete tree shown

in Figure 2 and the other two (colored as pink) do not. Intuitively,

since we know Ttest prefers band Modern Baseball, based on the

given training tree Ttrain , we should recommend tracks from al-

bum You’re Gonna Miss It All inTtrain with a high confidence, since

there are 4 out of 5 tracks in the incomplete playlist coming from

this album; and recommend tracks from album Sports inTtrain with

a lower confidence since only one track in the Ttest comes from

the same album. Furthermore, we would also recommend other

artists’ tracks, such as Mayday Parade and The Front Bottoms since
they exist inTtrain and are all rock bands. In addition, during such

recommendation, tracks from other pop punk bands in Ttrain will

also be recommended but with a very low level of confidence since

there is no evidence that playlist Ttest prefers pop punk music.

In summary, we compare an incomplete playlist (sub-tree Ttest)
with a complete train playlist (tree Ttrain) once per time, and give

different scores of confidence for each leaf (track) in Ttrain based

on the comparison of their structures.

Another challenge is to determine the similarity/distance be-

tween incomplete playlist and the train complete playlist. In the

research area of bioinformatics, there are many measures to present

the similarity/distance between two trees, e.g. Robinson-Foulds (RF)

distance. However, such widely used comparison measures could

not be used in our case because: 1) our constructed tree has fixed

depth for all branches; 2) each node in our tree has strict meaning;

3) in most cases, a leaf can only belong to one specific parent node,

in another word, one track only belongs to a specific album by a

certain artist. Thus, we design a measure to calculate the distance

between one incomplete tree and another complete tree. All rec-

ommendation processes of this model are shown on Algorithm

2.

It should be noticed that the Θlevel , which is the multiplier for

each level of constructed trees, and β , a bias power of similarity

score, will be different for each task. These hyper-parameters de-

pend on the number of seed tracks in the incomplete playlist. Again,

we use the same strategy of normalization shown in 3.1.

Algorithm 2 Constructed Tree Comparison

1: MPD: The 1 million complete playlist dataset

2: Ttrain : A complete playlist inMPD
3: Ttest : A incomplete playlist in C
4: Θlevel : A multiplier for each level of constructed trees

5: β : A bias power for calculated similarity

6: ALL_TRACK : All tracks existed inMPD
7: IDF : The inverse document frequency of all tracks existed in

MPD for normalization

8: function Comparison(Ttrain , Ttest , IDF , Θlevel , β)
9: Using DFS retrieve Ttrain and Ttest
10: S[root] = 0 ▷ S stores the similarity score for each node in

Ttrain compare with Ttest
11: for level from artist to track do
12: common_nodes = Ttrain_level ∩Ttest_level
13: for node n in common_nodes do
14: if n is leaf then
15: i = n’s parent in Ttrain
16: S[n] = |common_nodes | × Θlevel + S[i]
17: else
18: i = n’s parent in Ttrain
19: j = n’s children in Ttrain
20: k = n’s children in Ttest
21: S[n] =min(|j |, |k |) × Θlevel + S[i]
22: for leaf l in S do
23: Normalized_S[l] = S[l]β × IDF [l]
24: return Normalized_S

25: function Recommendation(Ttest ,MPD)
26: for track t in ALL_TRACK \Ttest do
27: Score[t] = 0 ▷ Initial score for every track not in Ttest

28: for playlist Ttrain inMPD do
29: Normalized_S = Comparison(Ttrain ,Ttest)
30: for track t in Ttrain do
31: Score[t] += Normalized_S[t]
32: Sort Score by decreasing order

33: return Score[: 500] ▷ Top 500 tracks in Score

TrailMix: An Ensemble Recommender System for Playlists RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

Figure 4: TrailMix For TASK 2

3.4 Ensemble Model: TrailMix
Finally, we ensemble the threemodels together into our final TrailMix

recommender. Based on the individual performance of each model

(shown in Section 4), we employ some sub-models for TASK 2 to

10, respectively.

3.4.1 For TASK 2. We find that C-Tree performs much better for

TASK 2 in terms of all three measures than DNCF. To extract the

most accurate predictions from DNCF model, here we employ a

feature num_holdouts , the number of tracks that have been omit-

ted from the playlist, as an important information given by the

challenge dataset. The num_holdouts is essential for evaluating

measure R-precision since R-precision will only consider the first

num_holdouts tracks of 500 recommended tracks. We take the ad-

vantage of both models and design an ensemble model shown on

Figure 4. Let RDNCF be the recommended 500 tracks by DNCF

and RC−T ree be the recommended 500 tracks by C-Tree. And we

define the ADNCF as the first num_holdouts tracks of RDNCF and

BDNCF as the rest set of tracks; similarly, define AC−T ree as the

first num_holdouts tracks of RC−T ree and BC−T ree as the rest set
of tracks. Finally, we recommend the list ϕf inal as follows:

ϕf inal = [L1,L2,L3,L4].
In terms of the internal ordering of tracks in each set (L1 to L4),
we combined the order of tracks from RDNCF and RC−T ree by giv-

ing weights (based on model’s individual performance) for ranked

tracks in each model. Details of this ordering part will be shown in

Section 3.4.2.

3.4.2 For TASK 3 to 10. For TASK 3 to 10, which are given between

5 to 100 seed tracks in each playlist, we combine the recommended

500 tracks in RNueCF and RC−T ree using their individual ordering.

For t ∈ RDNCF , Scoret_DNCF = 500−Indext where Indext_DNCF
is the ranked index from 1 to 500 in RNueCF . Similarly, we calcu-

late the Scoret_C−T ree for t ∈ RC−T ree . Next, based on checking

the individual performance for each model, we give a pre-tuned

multiplier as a weight for each model. Finally, we sum the weighted

score for t in StDNCF and StC−T ree , then keep the top 500 tracks

with highest scores as our final recommendation.

3.4.3 For TASK 1 and other meaningful playlist title. . For TASK
1, we purely use the CC-Title model for the recommendation. Sur-

prisingly, although the overall performance of this model is not

good, we found when playlist title contains some certain words,

e.g. Christmas, Christian, Disney, etc. the performance in terms of

all three evaluation measures overcomes results from DNCF model

and C-Tree model. Therefore, when we encounter such words in

a playlist title, we combine the recommended tracks from the CC-

Title model, RCC−T itle , together with RDNCF and RC−T ree using

the combination method mentioned in Section 3.4.2.

4 EXPERIMENT RESULTS AND ANALYSIS
In the experiments, we split the 1 million train playlists into five

subsets and use cross-validation for hyper-parameter tuning. In

terms of the pre-processing the train/test dataset for different tasks,

we strictly follow the rules shown on the RecSys Challenge website.

We use 0.8 million complete playlists as the train data and the other

0.2 million playlists as the test data.We process the test data for each

task by keeping a number of seed tracks sequentially or randomly

and using the rest tracks as ground truth.

Since the results shown on the RecSys Challenge Leaderboards
2

are only the average results for all 10 tasks, we report how our

models perform in different tasks. Table 2 shows the results for

TASK 1, which provides the playlist title only as the information. In

summary, the overall performance is much worse compared with

other models since the only available information could be used is

the title of the playlist, and there is no doubt TASK 1 becomes the

bottleneck of our overall performance. However, when we check

the details of the results, we found that in some cases, specifically

when playlist title contains some words like Christmas, Disney, or
Christian, the results using CC-Title will perform much better than

the other two models. Based on this finding, we decide to combine

the results from CC-Title with other results when these words exist

in the playlist title in TASK 2 to 10.

Table 2: Results for CC-Title
#Seeds R-precision NDCG Clicks

TASK 1 0 0.0639 0.1473 11.77

Table 3: Results for DNCF
#Seeds R-precision NDCG Clicks

TASK 2 1 0.1001 0.1817 9.663

TASK 3 5 0.2057 0.3189 2.774

TASK 5 10 0.2095 0.3383 1.767

TASK 7 25
S

0.2137 0.3442 1.552

TASK 8 25
R

0.2251 0.3642 0.981

TASK 9 100
S

0.2027 0.3187 1.412

TASK 10 100
R

0.2135 0.3384 1.142

S: sequential ordering; R: random ordering. Same definitions will be used

in Table 4 and Table 5.

Table 3 and Table 4 show the results for TASK 2 to TASK 10.

We have omitted the results for TASK 4 and 6, because TASK 3

and 5 contain the same sequential seed tracks as TASK 4 and 6,

respectively. Since we have not considered the use of the playlist

title, applied recommendation model is the same. During checking

the individual result for DNCF and C-Tree, we found that the perfor-

mances of the former overcome the latter in every task, especially

for TASK 2 which provides one seed track. Therefore, when we

combine these two models, we employ the TrailMix shown in 3.4.1

which takes a greater weight from C-Tree than DNCF for TASK 2.

And for TASK 3 to 10, we give a higher weight for the individual

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada X. Zhao et al.

recommended tracks coming from C-Tree when we combined it

with DNCF. With the growth of the number of provided seeds for

the ten tasks, we have noticed that the results steadily increase

with maximum performance at seed 25. Then they dropped down

when the number of seed tracks continually growing to 100. We

think this is because the average num_holdouts decreased for the

playlist with more seed tracks, although more seed tracks provide

more information to predict and recommend, these two models still

face a greater challenge to predict accurate tracks in the ground

truth with limited chances. An interesting insight was observed

when comparing the results for TASK 7 & 8, and TASK 9 & 10. Our

models perform better for playlists with random seeding tracks,

which inspires us to employ the giving orders of seeds into our

models in the future works.

Table 4: Results for C-Tree
#Seeds R-precision NDCG Clicks

TASK 2 1 0.1554 0.2750 3.6256

TASK 3 5 0.2106 0.3618 1.3147

TASK 5 10 0.2220 0.3793 1.4374

TASK 7 25
S

0.2317 0.3938 1.2532

TASK 8 25
R

0.2322 0.3974 1.0826

TASK 9 100
S

0.2173 0.3797 1.3031

TASK 10 100
R

0.2168 0.3837 1.1926

Table 5 shows the result for the ensemble model, TrailMix, we

designed in Section 3.4. Most scores are improved compared with

the individual performance of each model. Specifically, the average

R-precision is 14.9% better than DNCF and 6.9% better than C-Tree;

the average NDCG is 17.8% better than DNCF and 1.8% better than

C-Tree; and the average Clicks is 48.3% better than DNCF and 11.7%

better than C-Tree. These results verify that our ensemble models

perform effectively and steadily.

Table 5: Results for TrailMix
#Seeds R-precision NDCG Clicks

TASK 2 1 0.1664 0.2746 3.6075

TASK 3 5 0.2301 0.3750 1.0753

TASK 5 10 0.2377 0.3890 1.3275

TASK 7 25
S

0.2470 0.4008 1.0847

TASK 8 25
R

0.2481 0.4104 0.7286

TASK 9 100
S

0.2270 0.3792 1.1921

TASK 10 100
R

0.2281 0.3832 0.9100

Table 6 shows the official results shown on the challenge leader-

boards. It should be emphasized that we cannot submit the pure

results from DNCF nor C-Tree since TASK 1 must be finished be-

fore submission. Therefore, Table 6 shows the results from CC-Title

(TASK 1) + DNCF (TASK 2-10), CC-Title (TASK 1) + C-Tree (TASK

2-10), and TrailMix. The results coming from final ensemble model

are used as our final submission of this challenge
3
.

3
These scores are shown on the RecSys Challenge leaderboards at https://

recsys-challenge.spotify.com/leaderboard

Table 6: Results for TrailMix on Leaderboards
R-precision NDCG Clicks

DNCF + CC-Title 0.1724 0.3292 2.8152

C-Tree + CC-Title 0.1981 0.3567 2.4756

TrailMix 0.2057 0.3711 2.2710

5 CONCLUSION & FUTUREWORK
In this paper, we presented our methods for the RecSys Challenge

2018. While providing some encouraging results, we believe there

is still much room for improvement. In our future work, one of the

directions is to further explore and employ different distance meth-

ods to compare the training playlist with the seeded incomplete

playlist. We can consider using more information into the models,

such as the orders and names of tracks. In addition, we can work

on the model using only playlist title, e.g. employ different Natu-

ral Language Processing methods to embed the titles and discover

the latent relations between words and phrases, to significantly

overcome our bottlenecks.

REFERENCES
[1] Bernard R Baum and Mark A Ragan. 2004. The MRP method. In Phylogenetic

supertrees. Springer, 17–34.
[2] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing

with Python: analyzing text with the natural language toolkit. " O’Reilly Media,

Inc.".

[3] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. RecSys

Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the
12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY,

USA.

[4] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On sampling strategies

for neural network-based collaborative filtering. In KDD.
[5] Bruce Ferwerda, Markus Schedl, and Marko Tkalcic. 2015. Personality & emo-

tional states: Understanding users’ music listening needs. CEUR-WS. org.

[6] Michael Gillhofer and Markus Schedl. 2015. Iron Maiden While Jogging, De-

bussy for Dinner?. In MultiMedia Modeling, Xiangjian He, Suhuai Luo, Dacheng

Tao, Changsheng Xu, Jie Yang, and Muhammad Abul Hasan (Eds.). Springer

International Publishing, Cham, 380–391.

[7] Allan D Gordon. 1986. Consensus supertrees: the synthesis of rooted trees

containing overlapping sets of labeled leaves. Journal of classification 3, 2 (1986),

335–348.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. InWWW.

[9] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast

matrix factorization for online recommendation with implicit feedback. In SIGIR.
[10] Beth Logan. 2002. Content-Based Playlist Generation: Exploratory Experiments..

In ISMIR.
[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

NIPS.
[12] Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.

In NIPS.
[13] Martin Pichl, Eva Zangerle, and Günther Specht. 2015. Towards a context-aware

music recommendation approach: What is hidden in the playlist name?. In Data
Mining Workshop (ICDMW), 2015 IEEE International Conference on. IEEE, 1360–
1365.

[14] Radim Rehurek and Petr Sojka. 2010. Software framework for topic modelling

with large corpora. In In Proceedings of the LREC 2010Workshop on New Challenges
for NLP Frameworks.

[15] Peter J Rentfrow and Samuel D Gosling. 2003. The do re mi’s of everyday life: the

structure and personality correlates of music preferences. Journal of personality
and social psychology 84, 6 (2003), 1236.

[16] Yi-Hsuan Yang and Homer H Chen. 2011. Music emotion recognition. CRC Press.

[17] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep learning based recommender

system: A survey and new perspectives. arXiv preprint arXiv:1707.07435 (2017).

https://recsys-challenge.spotify.com/leaderboard
https://recsys-challenge.spotify.com/leaderboard

	Abstract
	1 Introduction
	2 Dataset and Evaluation
	3 Trailmix
	3.1 CC-Title: Context Clustering using Playlist Title
	3.2 DNCF: Decorated Neural Collaborative Filtering
	3.3 C-Tree: Constructed Tree
	3.4 Ensemble Model: TrailMix

	4 Experiment Results And Analysis
	5 Conclusion & Future Work
	References

