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ABSTRACT

In the past decades, recommenders have achieved outstanding success in delivering personalized

and accurate recommendations. Highly customized recommendations bring individuals great

convenience, while helping content providers to connect with interested consumers accurately.

However, they may also lead to undesirable outcomes, often through the introduction of bias in

the training, deployment, and maintenance of recommender systems. For example, recommenders

may impose unfair burdens on certain user groups, disadvantaging their prominence on job-based

recommenders. And they may narrow down a user’s interest areas, raising concerns of echo

chambers, fairness, and diversity. In this dissertation, we ground our work in identifying gaps in

the literature for identifying and addressing bias in recommender systems, then introduce four

approaches for mitigating biases from multiple perspectives, listed as below:

• First, we identify an inherent bias in many recommendation algorithms which optimize

for the head (or popular portion) of the rating distribution, thus lead to large estimation

errors for tail ratings. We conduct a data-driven investigation and theoretical analysis of the

challenges posed by traditional latent factor models for estimating such tail ratings. With

these challenges in mind, we propose a new multi-latent representation method designed

specifically to estimate these tail ratings better, to reduce the bias associated with tail ratings

in recommender systems.

• Second, we address another unexplored bias – the target customer distribution distortion.

Traditional recommender systems typically aim to optimize an engagement metric without

considering the overall distribution of target customers, thereby leading to serious distortion

problems. Through a data-driven study, we reveal several distortions that arise from con-

ventional recommenders. Toward overcoming these issues, we propose a target customer

re-ranking algorithm to adjust the population distribution and composition in the Top-k target

customers of an item while maintaining recommendation quality.
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• Third, we focus on mitigating the next unexplored bias – user’s taste distortion. We show how

existing approaches assume a static view of user’s tastes, and so previously proposed calibrated

recommenders result in poor modeling of the shift of a user’s evolution. Thus, we empirically

identify the taste distortion problem through a data-driven study over multiple datasets. We

propose a taste-enhanced calibrated recommender system designed with the shifts and trends

of user’s taste preferences in mind, which results in improved taste distribution estimation

and recommendation results.

• Last but not least, we study the distribution bias in a dynamic recommendation environment.

Previous studies of such distribution-aware recommendation have focused exclusively on

static scenarios, ignoring important challenges that manifest in real-world dynamics and

leading to poor performance in practice. Hence, we present the first study of distribution bias

in dynamic recommendations, and propose new methods to mitigate this bias even in the

presence of feedback loops and other dynamics.
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1. INTRODUCTION

1.1 Background and Motivation

In the past decades, recommenders have achieved outstanding success in delivering personalized

and accurate recommendations. Recommender systems have flooded every corner of our lives. By

analyzing the past behaviors of users and finding patterns between users and items, recommenders

connect us to movies on streaming media platforms [1, 2, 3], jobs to apply for [4, 5, 6], items

to purchase on e-commerce sites [7, 8, 9], new stories to read [10, 11, 12], and even itineraries

for upcoming trips [13, 14, 15]. Furthermore, recommenders are driving new developments in

personalized health and emerging applications in machine learning [16, 17]. Indeed, these highly

customized recommendations bring individuals great convenience, while helping content providers

to more accurately connect with interested consumers.

Research in recommendation systems has historically emphasized the accuracy of recommenda-

tions. Such traditional recommenders often focus on accuracy-like metrics that emphasize whether

a user will interact with the recommended content. For example, will the user view a particular

movie or purchase a particular product? Naturally, this emphasis on accuracy-like metrics may

ignore vital bias concerns.

Accuracy-driven recommenders may also lead to undesirable (and often unforeseen) outcomes,

often through the introduction of bias in the training, deployment, and maintenance of recommender

systems. For example, recommenders may impose unfair burdens on certain user groups, disad-

vantaging their prominence on job-based recommenders through gender bias.* They may augment

racial bias in crime prediction.† Recommenders may narrow down a user’s interest areas, raising

concerns of echo chambers [18], fairness [19, 20] and diversity [21, 22, 23]. This “down the rabbit

hole effect” may lead an algorithm to continually recommend the same type of content (since it

maximizes engagement metrics) even if the content is not societally optimal. Recommenders may

*https://factorialhr.com/blog/gender-bias-recruitment/
†https://medium.com/thoughts-and-reflections/racial-bias-and-gender-bias-examples-in-ai-systems-

7211e4c166a1
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Figure (1.1) The conceptual framework of recommendation bias. On each arrow, there are also related
representative de-biasing research. The methods in red – MLR, U2I-CaliRec, TecRec, and DisCo – are the
contributions introduced in this dissertation research.

propagate unexpected demographic distributions; for example, a biased prediction of the demograph-

ics of target customers (e.g., by gender or age) could lead to the loss of potential consumer groups

by mis-targeting the recommendations [24]. In one extreme, there are reports of recommenders

facilitating the exploitation of minors‡.

Recently, many efforts have begun investigating bias and fairness issues in recommendation

systems, and focused on building bias-aware recommender systems for certain types of bias concerns,

including studies of selection bias [25, 26, 27, 28], exposure bias [29, 30, 31, 32], popularity bias

[33, 34, 35, 36], and position bias [37, 38, 39, 40], among many others. While there is increasing

recognition of the challenges of bias in recommendation, many existing works focus on individual

instances of bias. Hence, this dissertation research is grounded in a comprehensive conceptual

framework for identifying bias in recommender systems from multiple perspectives. Figure 1.1

shows the main structure of our conceptual framework. Briefly speaking, it views bias from the

perspective of: (1) two types of bias: appearance and performance; and (2) two affected objects:

users and items. We now introduce each of the concepts and perspectives as follows.

Bias Types: Appearance vs. Performance. Appearance focuses on the constituents of the recom-
‡https://techcrunch.com/2019/02/18/youtube-under-fire-for-recommending-videos-of-kids-with-inappropriate-

comments/
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mendation list returned from a recommendation system. For example, for a job recommendation

platform such as LinkedIn or Glassdoor, the appearance is the predicted male-female ratio for a

given job position. In this context, we compare the predicted gender ratio with a target distribu-

tion. We may want the target gender ratio as 1:1 for fairness concerns, or as an unbalanced but

reasonable one for some positions. In this case, we expect an unbiased recommender should return

a gender-ratio close to the desired one.

On the other hand, performance focuses on the prediction quality of the recommendation list for

the recommender system. For example, for males and females, will a system equally treat them by

providing recommendations with the same quality? If not, it will raise bias or fairness concerns.

Unlike the appearance, the performance is a pure fairness consideration which keeps the principle

of “everyone created equal” in mind. Generally, we expect an unbiased recommender should return

an equal-quality prediction for every user or item group.

Objects: User-level vs. Item-level. Next, we consider bias problems from the user and item

perspective, respectively. We have the user-level consideration, such as their demographics and

activities; and we have the item-level consideration, such as items’ categories and popularity. All

these factors could raise bias issues in recommendation results, though the relative importance are

application dependent. For example, from an advertisement display platform’s perspective, we

may want to give a prominent position for an item that is not popular yet but has great potential.

Therefore, a cold-item-friendly recommender should be the priority. On the other hand, from the

perspective of a user, we care more about the quality (or accuracy) of personalized recommendations.

For example, the user’s activity is an indicator of how long or how active a user interacted with the

platform. Here, in this context, bias is the difference in performance among users with different

activities, e.g., new or loyal users.

Even framing the bias in recommender systems, there are still many research opportunities and

challenges remain. For example, how do we identify bias in different settings of recommendation,

and how do we mitigate these biases? With this conceptual framework, we show in Figure 1.1

representative de-biasing research efforts that align with these two perspectives: both from the
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performance and appearance perspective and from the user-level and item-level perspective.

1.2 Contributions

Through this conceptual framework, this dissertation identifies gaps in the literature for identify-

ing and addressing bias in recommender system. It then couples this conceptual framework with

four new methods for mitigating bias in recommender system (highlighted in red in Figure 1.1). In

sum, this dissertation is structured around the following unique contributions:

• Mitigating Bias of Item’s Rating Estimation: In our first contribution, we identify an

inherent bias in many recommendation algorithms to optimize for the head (or popular

portion) of the ratings distribution, leading to large estimation errors for tail ratings. We

conduct a data-driven investigation and theoretical analysis of the challenges posed by

traditional latent factor models for estimating such tail ratings. These approaches assume

a single latent representation, leading to over- and under-estimations of tail ratings, with

particularly pronounced errors on controversial items. With these challenges in mind, we

propose a new multi-latent representation method designed specifically to estimate these

tail ratings better, to reduce the bias associated with tail ratings in recommender systems.

Experimental results show the estimation improvement is especially great for those items far

from the ratings mean. Furthermore, the proposed model is generalizable and can be easily

extended to take advantage of other single-latent-representation-based models.

• Mitigating Bias of Item’s Target Customer Distribution: In our second contribution,

we address another unexplored bias problem – the target customer distribution distortion

issue. Traditional recommender systems typically aim to optimize an engagement metric

without considering the overall distribution of target customers, thereby leading to serious

distortion problems. Through a data-driven study, we reveal several distortions that arise

from conventional recommenders. Toward overcoming these issues, we propose a target

customer re-ranking algorithm to adjust the population distribution and composition in the

Top-k target customers of an item while maintaining recommendation quality. By applying
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this proposed algorithm onto a real-world dataset, we find the proposed method can effectively

make the class distribution of items’ target customers close to the desired distribution, thereby

mitigating distortion.

• Mitigating Bias of User’s Dynamic Taste Distribution: In our third contribution, we focus

on mitigating a related unexplored bias problem – user’s dynamic taste distortion issue.

We show how existing approaches assume a static view of user’s tastes, and so previously

proposed calibrated recommenders result in poor modeling of the dynamics of a user’s

evolution. Thus, we empirically identify the taste distortion problem through a data-driven

study over multiple datasets. We show how taste preferences dynamically shift and how a

calibration mechanism should be designed with these shifts in mind. We further demonstrate

how to incorporate these preference shifts into a taste enhanced calibrated recommender

system, which results in improved taste distribution estimation and recommendation results.

• Mitigating Bias of Distribution in Dynamic Recommendation: In our fourth contribution,

we present the first study of distribution bias in dynamic recommendations, and propose new

methods to mitigate this bias even in the presence of feedback loops and other dynamics. We

first conduct a data-driven study of distribution bias in a dynamic environment, where we find

conventional distribution-aware recommenders may not only raise more serious distribution

bias in the dynamic environment, but also cause a significant fall in recommendation perform-

ance. We then propose a distribution correction method to better model the shift of a user’s

preferences in the dynamic recommendation loop and better match the preference distribution

at each step of the dynamic process.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: Related Work. In this chapter, we discuss related work, specifically latent

factor recommendation model, rating distribution, calibration, and several different type of

recommendation systems.
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• Chapter 3: Improving the Estimation of Tail Ratings in Recommender System with

Multi-Latent Representations. In this chapter, we introduce MLR for better improving the

estimation of tail ratings by extending traditional traditional methods with new multi-latent

representations for better modeling these tail ratings.

• Chapter 4: Addressing the Target Customer Distortion Problem in Recommender Sys-

tems. In this chapter, we introduce U2I-CaliRec – a target customer re-ranking algorithm –

to adjust the population distribution and composition in the Top-k target customers of an item

while maintaining recommendation quality.

• Chapter 5: Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation

with Evolving Interests. In this chapter, we introduce TecRec – a post-ranking framework

incorporating a time-series neural network model to predict users’ preference shifts – that can

strongly improve both taste distribution estimation (i.e., mitigating both the rabbit hole effect

and the taste distortion problem) and recommendation quality in the static recommendation

environment.

• Chapter 6: Mitigating Distribution Bias in Dynamic Recommendation. In this chapter,

we introduce DisCo – a Distribution Correction Recommender that dynamically corrects

preference distribution in interactive recommendations. Results show that DisCo improves

the closeness of the preference distribution in the recommendation with users’ real future

preference, and increases users’ agreement with the preference distribution of the recommend-

ations. Results also indicate that the recommendation quality can be improved compared with

accuracy-driven recommenders and conventional distribution-aware recommenders, giving

more evidence that there is not always a trade-off between calibration and recommendation.

• Chapter 7: Conclusions and Future Work. We conclude the dissertation with a summary

of contributions, and discuss potential research extensions to the results presented here.
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2. RELATED WORK

This chapter highlights related works in conventional accuracy-driven recommendation systems

and de-biasing approaches for bias that may arise in recommendation results.

2.1 Accuracy-driven Recommendation

Traditional accuracy-driven recommenders aim to improve the accuracy of predicted user-

item relevance. In this section, we introduce related works of latent factor models, sequential

recommendations, and dynamic recommendations.

2.1.1 Latent factor models

The latent factor model is one of the cornerstones of modern recommender systems, critical

for traditional approaches [41, 42] as well as recent neural variants like NCF [43] and others

[44, 43, 45, 46, 47, 48]. Furthermore, these latent factor models have been adapted in a number of

directions, including location-aware recommendation systems [49, 50, 51], aspect-aware latent

factor models [52], and bio-inspired approaches [53, 54], among many others. Latent factor models

typically depend on an assumption of a single latent representation. That is, every item and user

has only a single latent representation. We refer to such approaches as Single Latent Representation

(SLR)-based methods.

At the core of these latent factor models, it is assumed that both items and users live in a

low-dimensional latent space, where the latent factors typically capture user preferences and item

characteristics. For instance, Matrix Factorization finds the optimal low-rank matrix Pm×r and

Qn×r, representing user latent factors and item latent factors respectively, such that P ·QT is close

to the original rating matrix Mm×n, where r is the predefined low rank, m is the number of users,

and n is the number of items.

argmin
P,Q

(M − P ·QT )2 (2.1)
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If M is the user-item rating matrix, each row of P and Q corresponds to a user latent factor and

an item latent factor, respectively. Since each user and item corresponds to a single row in P or

Q, we say this is an SLR-based method. In practice, many latent factor models incorporate bias

terms for users and items and a global offset into the prediction model. For clarity in the discussion,

consider the classic matrix factorization model (MF) with bias:

r̂ = pu · qTi + bu + bi + µ (2.2)

where r̂ is the estimated rating. In this case, pu and qi are the latent representations for user u and

item i, respectively. The bias terms capture user bias (bu), item bias (bi), and a global offset (µ).

More recently, neural variants like Neural Collaborative Filtering (NCF) have been proposed to

combine deep learning architectures with traditional matrix factorization [43]. In particular, NCF

is structured with two sub-models: Generalized Matrix Factorization (GMF) and a Multi-Layer

Perceptron. The GMF submodel corresponds to a neural version of MF, and so also relies on a

single latent vector for representing a user’s preference or an item’s characteristics.

2.1.2 Sequential Recommendation

Sequential recommendation is designed specifically to track a user’s changing interests to

improve recommendation accuracy, e.g., [55, 56, 57, 58, 59]. Sequential recommenders typically

combine personalized models of user behavior with a context defined by a user’s recent activities.

For example, Hidasi et al. introduced GRU4Rec which employs Gated Recurrent Units (GRU) to

model users’ click sequences for session-based recommendation [60]. Soon after, they improved

their original work with a version that further boosts Top-N recommendation performance [61].

Kang et al. proposed a self-attention based sequential recommender system, SASRec, which models

the entire user sequence, and adaptively considers consumed items for prediction [56]. Other

sequential recommender systems also achieve impressive performance, e.g., [57, 62, 63]. These

methods use sequential activities to model a user’s latent preferences in the next stage, however,

they are not fundamentally designed with recommendation distribution in mind. Therefore, the

resulting recommendations could lead to biases such as rabbit holes and echo chambers.

8



2.1.3 Dynamic Recommendation

Dynamic recommendations can be viewed as a closed-loop where users interact with the system

through a set of actions (e.g., clicks, views, ratings); this user-feedback data is then used to train a

recommendation model; the trained model is used to recommend new items to users; then the loop

continues. In this dynamic recommendation setting, there have been many efforts to identify sources

of bias [64, 65, 66, 67]. Chaney et al. explored the impact of algorithmic confounding on a range

of simulated recommendation systems [64]. They stated that algorithmic confounding amplifies

the homogenization of user behavior without corresponding gains in recommendation utility and

amplifies the impact of recommendation systems on item consumption distribution. Khenissi et

al. theoretically proved that in the dynamic environment, recommender system tends to limit the

discovery of users through iterative recommending [65]. Recently, Morik et al. studied how biased

feedback and uncontrolled exposure in a dynamic learning-to-rank system could lead to unfairness

and undesirable recommendation behaviors [66].

2.2 De-biasing Approaches

We already introduced different types of bias in recommendation systems in Chapter 1. In this

section, we introduce de-biasing approaches designed for explicit rating distribution, preference

distribution, and diversification.

2.2.1 Studies of Explicit Ratings distributions

Gediminas et al. investigated the impact of rating characteristics like rating density, rating

frequency distribution, and value distribution, on the accuracy of popular collaborative filtering

techniques [68]. Hu et al. observed that product ratings tend to fit a ‘J-shaped’ distribution [69]

since users provide reviews are more likely to “brag or moan” compared to all purchasers. As

an extreme case of the ‘J-shaped’ distribution is the ‘U-shape’ of controversial items with many

extreme ratings on both sides of the distribution. Victor et al. in [70] formalized the concept of

controversial items in recommendation systems and then compared the performance of several

trust-enhanced techniques for personalized recommendations for controversial items with polarized
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ratings (bi-modal distribution) versus other items. Similar to our observations, they showed that

predicting ratings for controversial items is much worse than for other items. Badami surveyed

state-of-the-art research on the polarization [71], finding that many trust-based recommender

system attempts to improve recommendation for controversial items by defining a trusted network

for each user, e.g., [72, 73, 74, 75]. Recently, Beutel et al. proposed a focused learning model

to improve the recommendation quality for a specified subset of items, through hyper-parameter

optimization and a customized matrix factorization objective [76].

2.2.2 Preference Distribution-aware Recommendation

Recently, Steck proposed a distribution-aware recommendation (what we refer to as CaliRec),

which focuses on the distribution of genres in a user’s recommendation list [18]. This work

aims to reflect the user’s interest areas in the recommendation result to ameliorate the rabbit hole

effect through re-processing the output of other recommender systems. Soon after, Kaya and

Bridge compared Steck’s work with intent-aware recommendations, and proposed a new version of

distribution-aware approaches and new evaluation metrics [77]. These studies in distribution-aware

recommendation make the strong assumption that the target distribution for recommended results

should fit the overall distribution in the training data. This assumption essentially asserts that a

user’s preferences are mature and fixed, and so post-processing should aim to match these fixed

preferences. Besides, existing works have focused primarily on one-shot static settings, ignoring

the distorting effects present in dynamic environments. Furthermore, these and related studies have

shown that the distribution adjustment and accurate recommendation tend to trade-off with each

other [78, 18, 24].

Distribution analysis is a long-standing problem in the statistics field, especially regarding

sample data from a population. Stratified sampling [79, 80, 81] is a sampling method from a

population that can be partitioned into sub-populations to better understand and represent the

population. It achieved great success in the statistical field but has not been fully adopted into

the research of personalized recommendation. Specifically, stratified sampling focuses on the

representativeness of strata to the whole population. And stratification is the process of dividing
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members of the population into homogeneous subgroups before sampling. Therefore, it is worth

considering stratified sampling to analyze the distribution without the dynamic changing, e.g.,

demographic distribution. However, it would be challenging to use such a traditional statistical

method to analyze the temporal-based distribution, e.g., a dynamic preference distribution in

recommendations. That is, stratification may ignore the trends and shifts of the change among each

subgroup, which would bring the poor estimation of the distribution in the next stage.

2.2.3 Diversity-focused Recommendation

Rather than aiming to match a user’s taste distribution as distribution-aware recommenders,

some methods aim to introduce diversity into the list of ranked results [82, 83, 84, 22, 85, 86]. For

example, a diversity-focused recommender may use the category of an item or the genre of a movie

as an “aspect,” with the aim of covering many diverse aspects [87, 88]. Some methods eschew such

explicit aspects in favor of identifying latent aspects as the basis of diversification [89].

These diversity-focused approaches can ameliorate the rabbit hole effect, but do so in a different

fashion from distribution-aware recommendations. For example, if a user watched 70 romance

and 30 action movies, a diversity-focused recommender system would avoid recommending 100%

romance movies; however, it may recommend other genres to achieve diversity, like horror, docu-

mentaries, or other genres that are not reflected in the user’s taste distribution. Therefore, compared

with distribution-aware recommendations, diversity-focused recommendations cannot provide the in-

terpretable diversification and provide possibilities to control the diversification to avoid undesirable

recommendation[24].

Furthermore, diversity-focused and distribution-aware recommender systems also differ in

terms of evaluation. Traditional diversity-focused recommenders use feature-based metrics, such as

α-NDCG [90] or subtopic recall (S-recall) [91]. Such metrics evaluate diversity (e.g., coverage of

aspects) of the recommended results. However, distribution-aware recommender systems evaluate

the taste distribution’s closeness in the recommended results and a target one.
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3. IMPROVING THE ESTIMATION OF TAIL RATINGS IN RECOMMENDER SYSTEM

WITH MULTI-LATENT REPRESENTATIONS*

Based on the conceptual framework of bias in recommendations (recall Figure 1.1), we begin

our study with the estimation bias for items with different ratings. For example, how can we predict

which popular movies a user will not like? Or which users will like an app that has received mixed

reviews? And for controversial items with polarized ratings (e.g., political books), how can we

ensure that we recommend items to the right subset of users? While recommender systems have

made great strides in connecting users to the right items – be it on YouTube, Yelp, Netflix, or

Amazon – there are still great challenges in estimating these tail ratings that are far from the mean

rating for many items.

We say that the tail ratings are ratings from a user to a specific item that are significantly lower

or significantly higher than an item’s average rating, typically accounting for a smaller fraction of

all ratings on an item. For example, Figure 3.1(a) shows the rating distribution for six different data

sets, all of which have a majority of ratings in the upper ranges (with a mean rating of 3.3 to 4.3).

The tail ratings for Amazon Books could be defined as the ratings of 1 or 2 (significantly below

the average 4.09) that account for a small fraction of all ratings. The tail ratings for MovieLens

could be defined as the 1-2 ratings, as well as the 5 ratings (well below and above the average 3.35

rating). In contrast, the head ratings are those ratings that are close to the average rating, typically

accounting for the majority of all ratings on an item.

While the importance of the distribution of ratings on recommender system has been long

recognized, e.g., [68, 71, 69, 70], many popular methods based on latent factor models and recently

introduced neural variants [92, 93, 94, 43, 45, 46] optimize for the head of these distributions,

potentially leading to large estimation errors for tail ratings. As we will show in Section 3.1,

*Reprinted with permission from “Improving the Estimation of Tail Ratings in Recommender System with
Multi-Latent Representations” by Xing Zhao, Ziwei Zhu, Yin Zhang, and James Caverlee, 2020. Proceedings of
The Thirteenth ACM International Conference on Web Search and Data Mining. Copyright 2020 by ACM. DOI:
https://doi.org/10.1145/3336191.3371810
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these tail estimation errors are common across multiple domains and datasets, leading to large

over-estimations of the ratings of items with very low ratings, and large under-estimations of the

ratings of items with very high ratings. For example, Figure 3.1(c) shows large RMSE prediction

errors for these tail ratings when using two popular latent factor models. These errors can lead to

bad recommendations, degrade trust in the recommender, and for controversial items, potentially

expose users to items they are diametrically opposed to.

In this chapter, we study the problem of estimating tail ratings with an emphasis on improving

the quality of these estimates within latent factor models that drive many modern recommenders.

We show how many existing methods rely on an assumption of a single latent representation

(what we refer to as SLR; a discussion can be found in Chapter 2) that leads to large errors in tail

rating estimation. We conduct a data-driven investigation of the limitations of such an assumption

underlying these models whereby ratings are assumed to fit a uni-modal distribution. Paired with

this investigation, we formally analyze the limitations of these single latent representation methods

with respect to tail ratings. With these limitations in mind, we propose a new method which is

designed to learn multiple latent representations for better modeling these tail ratings. In this way,

the estimation of tail ratings can escape the constraint of a uni-modal distribution. We show how

to incorporate these multi-latent representations in an end-to-end neural prediction model that is

designed to better reflect the underlying rating distributions of items. Through experiments over

six datasets from Amazon, Goodreads, and MovieLens, we find the proposed model leads to a

significant improvement in RMSE versus a suite of benchmark methods. We also find that the

predictions for the most polarized items are improved by more than 15%.

This chapter is structured as follows. Section 3.1 introduces the datasets used in this chapter,

followed by a data-driven investigation and theoretical analysis of the limitations of traditional latent

factor models for dealing with tail ratings. We introduce our proposed multi-latent representation

approach in Section 3.2, and then evaluate it over multiple datasets in Section 3.3. Finally, we

summarize this work in Section 3.4.
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# Users # Items # Ratings # Avg

Amazon Books 3,824 9,640 172,018 4.09
Amazon Digital Music 5,541 3,568 64,706 4.22
Amazon Kindle 68,223 61,934 982,619 4.35
Amazon CD & Vinyl 75,258 64,443 1,097,592 4.29
GoodReads 2,671 7,702 195,174 4.00
MovieLens 610 9,724 100,836 3.35

Table (3.1) All datasets have a global mean around 3.35 to 4.35, with tail ratings in the lower (1-2) and
upper (5) portions of the distribution.*

3.1 A Data-driven Study of Tail Ratings

In this section, we conduct a two-part investigation of the single latent representation assumption

underlying latent factor models like MF and NCF and how this impacts tail ratings. Firstly

(Section 3.1.1), we demonstrate the challenges in estimating tail ratings across six datasets that are

due to the fundamental uni-modal latent factor distribution. Secondly (Section 3.1.2), we formally

analyze the limitations of SLR-based methods with respect to tail ratings.

3.1.1 Data-Driven Study

We use six ratings-based datasets: Amazon Books, Amazon Digital Music, Amazon Kindle,

and Amazon CDs & Vinyl [95], MovieLens [96], and GoodReads [97]. For each, we adopt the

N-core selection criteria which have been shown to lead to more robust training and evaluation: that

is, each user gives at least N ratings, and each item receives at least N ratings. Specifically, we use

12-core for Amazon Books and 5-core for the others. For MovieLens, we consider users who have

rated at least 20 movies. For the following analyses and experiments, we randomly split the ratings

of each user into training, validation, and test sets using a random 60%, 20%, 20% split. Details of

these datasets are shown in Table 3.1.

Observations: All Ratings. For each dataset, we estimate ratings of the test set using the standard

latent factor model in Equation 2.2 (MF) and a neural variant based on NCF, since these two are

foundational for both traditional and neural recommenders.

14



Figure (3.1) The count of ratings for six different datasets (a); the predicted ratings by MF and NCF are
uni-modal as shown in (b); meaning that errors are concentrated in the tails of the predicted distributions (c).*

Figure 3.1 (a) shows the original rating distribution in the test set for each of our six datasets.

As we can see, from the perspective of all ratings, the count of the original ratings fits a uni-modal

distribution. The tail ratings (e.g., rating ‘1’ and ‘2’ for many datasets, but also rating ‘5’ for

MovieLens) only take a small portion of the overall ratings, and most ratings concentrate around

the global mean (what we refer to as the head of the rating distribution).

Figure 3.1 (b) shows the distributions of predicted ratings by Matrix Factorization (blue) and

Neural Collaborative Filtering (yellow). Predicted ratings by MF are normally distributed with a

mean which is close to the global means in the training dataset. Regardless of the number of tail

ratings in the ground truth, very few ratings are predicted around the tails. Similarly, results using

the NCF are slightly better with respect to the data distribution, and the mean is slightly off-centered

of the global mean. However, similar to what we observed for MF, the predicted ratings by NCF are

mostly concentrated around the head of the distribution, with very few ratings predicted around the

tails. These observations show how tail ratings are more likely to be under-served by traditional
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Controversial
Items

Polarized
Ratings

Rating
Percentage

Amazon Books 128 1,393 0.810%
Amazon Digital Music 11 67 0.104%
Amazon Kindle 233 1,589 0.162%
Amazon CD & Vinyl 362 4,650 0.424%
GoodReads 54 752 0.385%
MovieLens 38 99 0.098%

Table (3.2) Ratings of controversial items in six datasets.*

methods that rely on a single latent representation. Due to the high global mean, low tail ratings are

most likely over-estimated by such current methods.

Figure 3.1 (c) demonstrates the prediction errors (RMSE) for the ground truth ratings in our

test set. As we can see, the predictions are extremely poor for tail ratings for both MF and NCF.

For instance, in the Amazon Books dataset, all ratings of ‘1’, which are far from the global mean

4.09, have much worse prediction error (by both MF and NCF) than ratings ‘3’, ‘4’, and ‘5’, which

are closer to the global mean. Similar situations are evident for the other datasets as well. Since

SLR-based models primarily under-serve these tail ratings, our goal in the following section is to

improve this estimation by relaxing the single latent representation assumption.

Observations: Polarized Ratings. We further focus on an extreme case of tail ratings: polarized

ratings. Polarized ratings can indicate controversial items; a recommender that mistakenly estimates

a high rating for what a user would perceive as a low rating (or vice versa) can be a serious error

particularly in domains like politics [98, 99]. Following previous work [100], we adopt a variance

threshold, V AR(Ri) >= 3, to identify items with polarized ratings. We also ensure that the items

have at least a minimum number of ratings, |Ri|>= 5, leading to the smaller dataset in Table 3.2.

Focusing on two of the datasets in Figure 3.2, we see the original polarized distribution (green

bars) of books in the test set. These distributions are bi-modal, with peaks near to the lowest rating

(1) and the highest rating (5). As before, we estimate the ratings of the test set using the standard

latent factor model in Equation 2.2 (ignoring NCF for now; the results are similar). The yellow bars

16



Figure (3.2) Rating distribution for controversial items in Amazon Books and Kindle. The actual ratings
(green) for these items fit a U-shape distribution. However, the predicted ratings (yellow) for these items fit a
uni-modal distribution, leading to high prediction errors.*

in Figure 3.2 show the predicted ratings for these polarized books in the test set. As expected, the

predicted ratings fit the uni-modal distribution and are quite distant from the original ground truth

ratings. Most of the ratings on the lower end have been over-predicted into the range near to the

global mean.

3.1.2 Limitations of SLR Methods

This data-driven investigation has shown that latent factor models with a single latent representa-

tion assumption perform poorly on estimating tail ratings, and especially so for items with polarized

ratings. But what is the underlying cause of these errors?

Loss Function Assumes Uni-Modal Data. From a probabilistic perspective, the prediction model

found by latent factor models like the ones underlying Matrix Factorization and Neural Collaborative

Filtering encourages the predicted value F (x|θ) to be close to the truth value y, where x is the given

feature, and θ denotes the parameters used in the prediction function. These models typically use an

L2 norm loss function, which is defined as:

LSLR =
N∑
i=1

‖y − F (x|θ)‖2
F (3.1)

Recall that the task of the model is to find the optimal parameter set θ using the following

17



function:

θ̂ = argmin
θ
LSLR (3.2)

Inside the loss function, ‖y−F (x|θ)‖2
F is the L2 norm between ground truth y and its predicted

value F (x|θ). Similarly, the widely used evaluation metric, Mean Square Error (MSE), is defined

as:

MSE =
1

N

N∑
i=1

‖y − F (x|θ)‖2
F =

1

N
LSLR (3.3)

Next, we consider a Gaussian distribution, defined as:

p(z|µ, σ2) = exp

(
−‖µ− z‖

2

2σ2

)
(3.4)

where µ is the mean and σ2 is the variance. If we let z = F (x|θ), where F (x|θ) is the predicted

value for y, let σ2 = 1, and let µ = ȳ (ȳ is the mean of data sample), then further apply the log to

both sides, we arrive at:

log p(F (x|θ)|µ, σ2) ∝ −1

2
‖F (x|θ)− ȳ‖2

F (3.5)

which is exactly the negative of the L2 norm loss. In other words, minimizing the L2 loss (or MSE)

is equivalent to maximizing the log-likelihood of a Gaussian. A similar derivation can be used to

show that minimizing the L1 loss – as in mean absolute error (MAE) – is equivalent to maximizing

the log-likelihood of a Laplacian.

Therefore, these traditional loss functions assume that the values y (the rating data of the original

matrix M ) come from a uni-modal distribution. So the observations in the previous section are

driven by this underlying uni-modal distribution assumption. While regularization terms can be

added to the loss function to help encourage the predicted values to deviate from a strict Gaussian

distribution, it is still fundamentally constrained by this uni-modal distribution assumption. Indeed,

any method using the L2 (or L1) norm loss – as in MF and NCF but also others – will face the

same limitation. Furthermore, since the loss function forces the predicted ratings to fit a uni-modal

distribution, it causes the learned latent factors to also fit a uni-modal distribution as well.
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Predictions are Blurry. As we’ve seen in our previous data-driven investigation, the rating distri-

bution for particular items is not necessarily uni-modal. As a result, SLR-based prediction models

can give rise to a “blurry” problem, which occurs when the distribution of data y follows a complex

distribution, e.g., a bi-modal distribution as in the polarized rating case for controversial items. In

these cases, the distribution of polarized ratings py may consist of two Gaussian distributions, d1 and

d2. But the distribution of the optimized predicted ratings, pF (x|θ), will only fit a single uni-modal

Gaussian (d1 + d2)/2. In other words, the predicted ratings tend to be blurry, which means they

are forced to follow the uni-modal Gaussian, due to the average of d1 and d2 [101]. Hence, the

predicted ratings, pF (x|θ), using the single-latent-representation-based models have a uni-modal

distribution, even for those items which have complex distributions, e.g., bi-modal distribution, in

the training dataset.

In the context of a latent factor model like MF or NCF, we have seen that the tail ratings have

worse predicted accuracy compared to ratings near to the global center (recall Figure 3.1). Now we

have theoretically analyzed why this occurs since SLR-based models are not distribution sensitive.

Regardless of how the ground truth is distributed, most predicted ratings will be in the range near to

the center, and the count for each predicted range fits the uni-modal distribution. Most tail ratings

will be either over-predicted or under-predicted, depending on the particular global means.

3.2 Our Approach: Multi-Latent Representation Recommender

We have experimentally and theoretically analyzed the phenomenon that ratings which are far

from the center have a worse predicted error using SLR-based methods, especially for items with

polarized rating distributions. In this section, we aim to overcome the limitation of single latent

representations by proposing a new method which is aware of multi-modal rating distributions.

In essence, we aim to learn multiple latent representations for each item and user. Our proposed

method – MLR – is a neural method with two main components: a multiple latent representation

factorization model (MLR-MF, refer to Section 3.2.1) and a gating mechanism to decide which

latent representation is most appropriate (MLP-Gate, refer to Section 3.2.2). Together, the entire

model is illustrated in Figure 3.3.
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Figure (3.3) Overview of MLR: (1) the bottom box shows the embedding layer, where each item and user
is represented as two latent vectors, L and H; (2) the top-left box shows the MLR-MF process to dot product
the learned two representations for each side, L and H, respectively; and (3) the top-right box shows the
MLP-Gate process which outputs the probability δui as the gate to control which pair of representations,
pL · qTL or pH · qTH , would be used for the final prediction.*

Setup. For a given user-item-rating dataset, our goal is to learn from the training dataset and

well predict the missing ratings whose ground truth value is far from the global mean. These

tail ratings are typically under-served by traditional methods. Formally speaking, in a training

dataset M with potential rating range [rmin, rmax] and global mean µ, we define the threshold

variable β = min(|µ− rmin|, |rmax−µ|). Then we define the tail rating range, T, is [rmin, µ−β) if

β = |rmax−µ|, otherwise T is (µ+β, rmax]. Our objective is to improve the prediction performance

in the tail rating range T, which are primarily under-served by traditional SLR-based models.

3.2.1 MLR Factorization Model (MLR-MF)

The fundamental principle of our approach is to model each user and item with multiple

representations. For ease of presentation, we focus on items with bi-modal distributions, so we

have two “avatars”: ILow and IHigh, and each one has its latent vector as its representation. The

threshold for splitting could be set as the global mean or the expectation value of all ratings for
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Figure (3.4) An example showing how to split ratings, using two “avatars” per item. In this case, two
Gaussian distributions, N(µ1, σ1) and N(µ2, σ2), capture the bi-modal distribution for this item, where µ1 is
close to the mean of the lower ratings, whereas µ2 is close to the mean of the higher ratings.*

each item (or from each user) in the training dataset. Figure 3.4 shows the schematic of this idea.

Specifically, rather than assuming the distribution of this item’s ratings fits a uni-modal distribution

with µ ≈ avg, we can instead take advantage of a mixture of Gaussian distributions N(µ1, σ1) and

N(µ2, σ2), which would more accurately reflect the distribution of the original ratings. The absolute

value of two peaks, l1 and l2, can systematically adjust the importance of the two representations

to describe one item. That is, when an item has ratings with a uni-modal distribution (as in most

cases), the splitting method would lead to l1 � l2 such that N(µ1, σ1) could have little influence

for the majority of ratings but would still be helpful for tail ratings.

Of course, this bi-modal approach can be extended to consider 3, 4, or more “avatars”, leading

to a mixture of multiple Gaussians. In practice, however, we do find advantages to using two

representations, rather than more. One of the drawbacks of the splitting process is the split

matrix could be sparser than the original one; thus, there would be a sharp decline of the learning

performance for each split matrix. Another reason to limit the number of mixtures is to relax the

strain on the gating process (introduced in the following section) to decide which avatar is the best

representation. Besides, since all our datasets have a quite small rating window (e.g., 1 to 5), few

cases have visible multi-modal distribution.
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In ideal conditions, the original matrix M should be automatically split to matrix MLow and

matrix MHigh, where each contains only higher (or lower) ratings, with a given binary label, I ,

for distinguishing whether a given pair (u, i) of the original M should belong to MLow or MHigh.

Next, by applying a standard SLR-based method on both new matrices, we could learn two user

latent vectors Plow and Phigh, and two item latent vectors QLow and QHigh, respectively. The ideal

predicted rating, r̃, for a pair (u, i) could be calculated by:

r̃ui =Iui × (puL · qTiL) + (1− Iui)× (puH · qTiH) (3.6)

meaning that, ideally, for a given user u and item i, if we know Iui, the side (low or high) the

predicted rating belongs on, then we could easily choose the rui = puL · qTiL or rui = puH · qTiH .

Experimental results (see Figure 3.5) show this ideal case can lead to an improvement in 55% of

RMSE in average over the traditional latent factor model on all datasets.

3.2.2 Gating Mechanism (MLP-Gate)

However, this information, I , is not known in the test dataset. Therefore, we propose to build a

Gated Multi-Layer-Perceptron (MLP-Gate) to learn the gate variable δ and let it control which side

(low or high) the predicted ratings should belong to. Similar to Equation 2.2, the final predicted

rating matrix, R̂, is calculated as follows:

R̂ =δ × (PL ·QT
L + bIL + bUL + µL)+

(1− δ)× (PH ·QT
H + bIH + bUH + µH)

(3.7)

where bUL & bUH are user bias, bIL & bIH are item bias, and µL & µH are global means for MLow

and MHigh, respectively.

The ground truth label of δ is given when we split the original matrix to two, i.e. I . Here we

build a sub-model, using the learned latent representations of users (PL and PH) and items (IL and

IH), to learn the δ for each given user-item pair.

From the bottom of Figure 3.3, in the MLR-MF learning part, each user (or item) has two latent

factors, i.e. pL and pH (or qL and qH for an item). It is intuitive to combine the user feature and item

feature in the same side together by concatenating MLP_L_1 and MLP_H_1. A similar design
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has been widely used in other neural recommenders [43, 102, 103]. For these two concatenated

layers, we add the hidden layers and use a traditional Multi-layer-perceptron (MLP) to learn the

interaction between user and item vectors in each side. We choose a Leaky_Relu as the activation

function in each hidden layer. The last layer of the MLP process is named MLP_L_X and

MLP_H_X , respectively.

Here, we also adopt the pre-trained latent factor, PMF and QMF , by traditional SLR models.

We employ the element-wise product into these two pre-trained latent factors, and concatenate

MLP_L_X and MLP_H_X together, to constitute the combined layer MLP Concatenate. Then,

we use the sigmoid as the activation function on MLP Concatenate layer and output the gate

probability δ.

3.2.3 Learning Process

To design the loss function for the MLR, we consider two parts to monitor the performance.

Firstly, we use I to check the predicted performance for δ, monitored by cross-entropy loss.

Secondly, we use the ground truth rating R to check the predicted performance for the final

predicted rating R̂, by Mean Squared Error (MSE).

Specifically, the loss function LMLR−MF for this MLR-MF sub-model is defined below:

LMLR−MF =‖R− R̂‖2
F + λ1 × (‖U‖2

F + ‖IL‖2
F + ‖IH‖2

F

+ ‖bu‖2
F + ‖biL‖2

F + ‖biH‖2
F )

(3.8)

where:

- R: ground truth rating matrix;

- R̂: predicted rating matrix by Equation 3.7;

- λ1: hyper-parameter controlling regularization terms for MF.

The loss function LMLR−MF is identical to the traditional SLR-based methods. To avoid the

blurry problem, we consider adding the loss for MLP-Gate together. For the part of MLP-Gate, we

choose binary cross-entropy as the loss function. The loss function LMLR−MLP is defined below:
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LMLR−MLP =− (I × log(δ) + (1− I)× log(1− δ))

+ λ2 × (‖W‖2
F + ‖b‖2

F )

(3.9)

where:

- I: ground truth label of input pair (u, i);

- δ: output value of MLP-Gate, the predicted probability of class of input pair (u, i);

- λ2: hyper-parameter controlling the regularization terms;

- W : All weights in MLP-Gate;

- b: All bias in MLP-Gate.

Up to now, since we learn the MLR-MF and MLP-Gate simultaneously, we can combine

LMLR−MF and LMLR−MLP as the final loss, defined as follows:

LMLR = LMLR−MF + α× LMLR−MLP (3.10)

where α is used for adjusting the contribution of the loss of MLP-Gate to the total loss. As we

demonstrated in Section 3.1.2, the L2 norm in LMLR−MF forces the generated ratings to be uni-

modal, however, α × LMLR−MLP could help the model to learn which pair of the latent factors,

pL · qTL or pH · qTH could be finally adopted to calculate the predicted value, then adjust the predicted

ratings to escape the uni-modal distribution.

In the learning process, we adopt the Adaptive Moment Estimation (Adam) [104] method as

the optimizer to train both MLR-MF and MLP-Gate, since it yields faster convergence for both

sub-models compared to SGD.

3.3 Experiments and Results

In this section, we evaluate the proposed MLR model over the six datasets listed in Table 3.1.

We consider four scenarios: (i) an ideal case to measure the ceiling potential improvement of MLR

versus SLR-based methods; (ii) a comparative study versus eight benchmark methods for all ratings

(both head and tail ratings); (iii) a focused comparative study on tail ratings only; and (iv) a case
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Figure (3.5) Ideal predicted ratings using two latent representations for both users and items, adopting the
ground truth Iui instead of the learned probability δui for final prediction.*

study on items with extreme polarized ratings, as a special case of tail ratings. We randomly split

the ratings of each user into training, validation, and test sets. 5-fold cross-validation is used in all

experiments. All experimental results shown below are evaluated on the test dataset.

3.3.1 Ideal Results

First, we evaluate the quality of the multiple-latent-representation underlying the MLR approach

in an idealized scenario. That is, we assume we have access to the ground truth label, I , from our

validation dataset that determines whether a given pair (u, i) of the original M should belong to

MLow or MHigh. In practice, of course, this label is unavailable to the model, but will give insights

into the ceiling potential of MLR. This scenario corresponds to having a cross-entropy loss of 0,

which is unlikely in practice.

Figure 3.5 shows the ideal predicted ratings using the multi-latent-factors representations in

two testing datasets as examples. As we can see, the distributions are better fits for the original

distribution than traditional methods (recall Figure 3.1), and it can capture the tail ratings far from

the global centers. Overall, the RMSE is 0.5147, which is a 49.22% improvement from the best

benchmark method (NCF) on the Amazon Books dataset (with an original RMSE = 1.0136). This

result encourages us that MLR has a stronger and more robust representative ability than SLR. From

the other perspective, the impressive ideal performance indicates that the actual performance of
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Figure (3.6) NDCG Comparison for all ratings on six datasets. MLR is slightly better than MF and NCF
on most datasets.*

MLR will strongly depend on the quality of the gating mechanism in the MLP-Gate portion of the

approach. Thus, the limitation now becomes how the gate δ controls which latent factors should be

used to represent an item or a user.

3.3.2 Prediction for All Ratings

First of all, we evaluate the performance of the MLR model on all datasets comparing with other

state-of-the-art methods. This evaluation considers all ratings, so improvements on tail ratings may

be overshadowed by predictions on a large number of head ratings closer to the mean rating.

For comparison, we choose Normal Predictor (NP) that guesses a random rating based on

the distribution of the training data, Co-clustering (CoC) [105], KNN, SlopeOne [106], SVD,

SVD++ [42], Neural Collaborative Filtering (NCF), and Matrix Factorization (MF) with bias as

benchmark methods. For our method, we tune the hyper-parameters in terms of number of hidden

layers, number of neurons of each layer, dimensions of a representative factor, activation functions,

and so on.

We first focus on the comparison of ranking quality. NDCG is the most popular measure for

evaluating the ranking quality in recommender systems [107]. Figure 3.6 shows the ranking quality
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comparison for all ratings on six datasets. We observed that the ranking performances are very

close among MLR, MF, and NCF, where MLR is slightly better than MF and NCF on most datasets

except Amazon Books. This result indicates that all these three methods perform well at ranking the

recommended items to users. Again, our objective is to improve the explicit estimation of ratings.

When the ranking qualities are similar, how good is MLR on accurately predicting user-item ratings?

NP CoC KNN SlopeOne SVD SVD++ MF NCF MLR

Amazon Books 1.4779 1.0487 1.0424 1.0910 1.0787 1.0639 1.0318 1.0136 0.9893
Digital Music 1.4115 1.0016 0.9936 1.0585 0.9429 0.9418 0.9292 0.9369 0.9039

Amazon Kindle 1.2265 0.8702 0.8728 0.9106 0.8253 0.8125 0.8084 0.7874 0.7879
CD & Vinyl 1.3743 1.0142 1.0079 1.0659 0.9810 0.9743 0.9681 0.9597 0.9355
GoodReads 1.3723 0.9734 0.9732 0.9616 0.9469 0.9424 0.9386 0.9353 0.9070
MovieLens 1.4915 0.9864 0.9345 0.9578 0.9397 0.9355 0.9264 0.9346 0.9155

Table (3.3) Comparing MLR versus eight benchmark methods for all ratings (including both tail and head
ratings). Overall, MLR shows a slight improvement in most cases, but with greater gains specifically among
tail ratings (see Table 3.4).*

Table 3.3 shows the overall results for all datasets using benchmark models and MLR. As we can

see, MLR results in the best RMSE for five of the datasets, with a small loss to NCF on one dataset.

Overall, the improvement is fairly small for all ratings, with a maximum of 3.36% improvement

versus MF and 3.51% improvement for NCF. Since the non-tail ratings dominate in the aggregate,

the overall improvements are small, indicating that MLR at least does not degrade rating prediction

performance relative to baselines.

3.3.3 Prediction for Tail Ratings

Hence, we next focus solely on the improvement to tail ratings. Table 3.4 shows a detailed

comparison between the proposed MLR method versus NCF and MF. For each dataset, we break

the predictions into buckets according to the predicted rating by MF – so there are predicted ratings

from 1-2, 2-3, and so on. The first three columns show the RMSE for MF, NCF, and MLR. The

columns ⇑MLR−MF and ⇑MLR−NCF show the prediction improvements for MLR versus MF and
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Predicted
Range

MF
(RMSE)

NCF
(RMSE)

MLR
(RMSE)

⇑MLR-MF
(%)

⇑MLR-NCF
(%)

Covered
T (%)

T ⇑MLR-MF
(%)

T ⇑MLR-NCF
(%)

A
m

az
on

B
oo

ks [1,2) 0.8717 1.0625 0.3366 61.38 68.32 0.01 61.38 68.32
[2,3) 1.5132 1.4256 1.1990 20.76 15.89 1.66 54.76 49.65
[3,4) 1.3294 1.2752 1.2428 6.51 2.54 70.44 23.46 15.51
[4,5) 0.8595 0.8659 0.8480 1.33 2.06 27.77 0.57 -2.59
>5 0.1818 0.2216 0.1418 22.00 36.0 - - -
All 1.0318 1.0136 0.9893 4.11 2.39 100 15.34 8.74

M
ov

ie
L

en
s

[1,2) 1.0927 1.1561 0.9936 9.07 14.05 3.29 17.52 26.39
[2,3) 1.0372 1.0532 1.0135 2.28 3.76 50.18 8.96 15.53
[3,4) 0.9053 0.9083 0.8996 0.63 0.95 45.74 0.74 -0.03
[4,5) 0.7612 0.7907 0.7515 1.28 4.95 0.79 2.73 2.54
>5 0.8928 0.9737 0.7830 12.29 19.58 - - -
All 0.9264 0.9346 0.9155 1.17 2.04 100 3.04 6.16

A
m

az
on

K
in

dl
e [1,2) 1.6149 1.3267 1.1774 27.08 11.25 0.49 86.31 25.83

[2,3) 1.3148 1.200 1.1962 9.01 0.34 8.81 18.36 28.14
[3,4) 1.1055 1.068 1.0734 2.91 -0.50 59.52 13.60 11.54
[4,5) 0.7116 0.7029 0.7024 1.29 0.06 30.70 3.57 1.69
>5 0.4368 0.3764 0.3598 17.61 4.40 0.47 18.33 6.00
All 0.8084 0.7874 0.7879 2.53 -0.01 100 8.93 7.43

C
D

&
V

in
yl

[1,2) 0.7149 1.3280 0.6660 6.84 49.85 0.03 47.70 45.29
[2,3) 1.5414 1.6074 1.1281 26.81 29.81 2.34 48.05 50.76
[3,4) 1.3702 1.3464 1.2804 6.54 4.90 47.14 22.12 19.78
[4,5) 0.8755 0.8708 0.8597 1.80 1.27 50.46 5.22 2.88
>5 0.2337 0.2592 0.2166 7.31 16.42 0.01 3.74 2.10
All 0.9681 0.9597 0.9355 3.36 2.52 100 11.79 9.50

G
oo

dR
ea

ds

[1,2) - - - - - - - -
[2,3) 1.4382 1.4377 1.2134 15.62 15.59 1.90 39.62 39.35
[3,4) 1.0570 1.0503 1.0253 3.00 2.38 82.10 10.81 8.96
[4,5) 0.7992 0.8043 0.7729 3.90 3.30 15.99 -2.98 -4.33
>5 0.3079 0.2911 0.3098 0.61 6.42 - - -
All 0.9368 0.9353 0.9070 3.18 3.02 100 7.88 6.14

D
ig

ita
lM

us
ic [1,2) 0.7059 1.7798 0.7468 -5.8 58.03 0.46 -5.8 58.03

[2,3) 1.4220 1.5920 1.2855 9.59 19.25 10.14 31.42 44.18
[3,4) 1.2610 1.2709 1.2134 3.77 4.52 56.68 17.19 14.88
[4,5) 0.7974 0.7981 0.7845 1.62 1.70 32.71 1.73 1.19
>5 0.2712 0.2915 0.2766 -1.99 5.11 - - -
All 0.9292 0.9369 0.9039 2.72 3.51 100 9.40 11.51

Table (3.4) Comparing MLR with single latent factor models MF and NCF for different rating ranges as
predicted by MF. For ratings predicted by MF and NCF, those farther from the global mean, the improvement
(in the columns ⇑MLR-MF and ⇑MLR-NCF) by MLR is more pronounced, especially for tail ratings (in the
columns T ⇑MLR-MF and T ⇑MLR-NCF). ‘-’ indicates there is no predicted data in the current range by MF.*
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NCF for each bucket of ratings, respectively. The column Covered T shows the tail ratings that are

covered by the current rating bucket. Finally, the columns T ⇑MLR−MF and T ⇑MLR−NCF show

the improvement for MLR versus MF and NCF for each bucket of tail ratings.

We observe that for ratings far from the center, e.g., ratings less than 3, the overall improvement

by MLR is substantial. For example, for Amazon Books with ratings from 1-2, MLR results in

a 60%+ improvement versus both MF and NCF. For ratings from 2-3, MLR results in a 15%+

improvement versus both alternatives. Of course, these tail ratings cover a small portion of all

ratings, but the improvements are large. And even for buckets with high coverage, there are still

improvements (e.g., 2.54% and 6.51% for Amazon Books for rating bucket 3-4). Considering

MovieLens, the tail ratings occur on both sides of the mean rating: we see large improvements for

the low rating bucket 1-2 (e.g., 9% and 14% versus MF and NCF) and for the high ratings bucket

4-5 (e.g., 1.28% and 4.95% versus MF and NCF).

In some cases, there are some decreases in the predicted tail rating range near to the global mean

in some datasets, e.g., a decrease of 2.59% on Amazon Books in the predicted range 4 to 5, and a

decrease of 0.03% on MovieLens data in the predicted range 3 to 4, compared with NCF. In these

ranges near the center, the proposed MLR approach may perform worse than traditional methods

since these methods predict most ratings in this range, but MLR does not. As a result, the gating

mechanism that guides δ may lead to mispredictions.

For a more detailed look, Figure 3.7 shows the distributions of predicted ratings by MLR versus

MF, as well as the ground truth ratings for Amazon Digital Music and Kindle datasets. As we can

see, rather than predicting most ratings near to the global mean, the MLR approach better fits the

original distribution of the ground truth data, and overcomes the uni-modal distribution limitation.

Overall, we observe that our prediction model performs better on the tail ratings.

3.3.4 Prediction for Controversial Items

Finally, we consider a special case of tail ratings for controversial items with low polarized

ratings. Specifically, we consider ratings of 1 or 2, which are over-estimated by traditional methods.

Therefore, we apply the MLR model on the controversial items in three of the datasets with
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Figure (3.7) Distribution of real (blue) and predicted (green by MF and red by MLR) ratings for two
datasets. Compared with the predicted ratings by MF (green), the predicted ratings by MLR (red) fit more
accurately to the actual ratings.*

Amazon
Books

Amazon
Kindle

Amazon
CD & Vinyl

MF (RMSE) 1.9711 1.7630 1.8816
NCF (RMSE) 1.8923 1.6524 1.7934
MLR (RMSE) 1.6355 1.4479 1.5903
⇑MLR−MF 17.02% 17.87% 15.48%
⇑MLR−NCF 13.57% 12.38% 11.33%

Table (3.5) Comparing MLR versus baselines for controversial items.*

sufficient items. Table 3.5 shows the predicted performance on the low-polarized ratings (1 or 2) of

the controversial items. The results are strong, where MLR improves the prediction of polarized

ratings by 17.02%, 17.87%, and 15.48% on Amazon Books, Amazon Kindle, and Amazon CD &

Vinyl dataset, respectively, compared with the MF method.

3.4 Summary

In this chapter, we studied the estimation bias for items with different ratings. We conducted

a data-driven investigation and theoretical analysis of the challenges posed by traditional latent

factor models for estimating tail ratings. These approaches assume a single latent representation,
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which can lead to over- and under-estimations of tail ratings, with particularly pronounced errors on

controversial items. With these challenges in mind, we proposed a new multi-latent representation

method designed specifically to estimate these tail ratings better. Experimental results show the

estimation improvement is especially strong for those items far from the ratings mean. Furthermore,

the proposed model is generalizable and can be easily extended to take advantage of other SLR-based

models.
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4. ADDRESSING THE TARGET CUSTOMER DISTORTION PROBLEM IN

RECOMMENDER SYSTEMS†

In essence, the worse estimation of tail ratings is due to the unequal distribution of all ratings.

Our proposed approach MLR introduced in last chapter improves the estimation of tail ratings in

explicit recommender systems. However, there is still bias and distortion caused by the inequitable

demographic distribution in implicit recommendation methods. Next, we analyze the distribution

bias of predicted target customers.

Predicting the potential target customers for a product is essential. Accurate analysis and

prediction of the population distribution of target customers for an item (e.g., a product or an

advertisement) could directly improve the item’s business prospects. One key factor in targeting

is the class distribution of target customers. For example, an advertising campaign may wish to

guarantee at least a certain demographic (e.g., 18-35) sees its ads. Or a job posting may wish to

guarantee that an equal number of women and men are targeted.

This focus on the overall distribution and composition of an item’s target customers is often in

opposition to the criteria driving personalized recommenders, which typically aim to optimize an

engagement metric without considering the overall distribution of target customers. For example,

recommendation algorithms such as Probabilistic Matrix Factorization (PMF) [108], Bayesian

Personalized Ranking (BPR) [109], and Neural Collaborative Filtering (NCF) [43], are designed

to optimize for metrics based on user-item interactions like meanaverageprecision, NDCG,

precision@k, or recall@k. However, these approaches typically do not consider the distribution of

target customers.

To illustrate, consider a media-service provider that recommends movies to their users. From

the perspective of each movie, what customers will be considered first as the targets to receive the

recommendation? One intuitive answer is that the target customers should be the ones who are most

†Reprinted with permission from “Addressing the Target Customer Distortion Problem in Recommender Systems”
by Xing Zhao, Ziwei Zhu, Majid Alfifi, and James Caverlee, 2020. Proceedings of The Web Conference 2020. Copyright
2020 by ACM. DOI: https://doi.org/10.1145/3366423.3380065
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potentially interested in this item. There are many approaches to recommend items to users based

on past user-item interactions. Suppose at the end, based on the predicted recommendation results,

we have a target customer set that receives the recommendation of item i. We use q as the class

(such as gender, age, or occupation) distribution of target customers for item i. By relying on a

recommender that does not consider the distribution of target customers, consider the following

distortions that may arise (and that we verify do arise in our data-driven analysis in this chapter):

Distortion 1: the target distribution q may be dominated by the overall class distribution. For

example, suppose the male-female ratio of users in the entire customer base is 70%:30%. For each

movie, the set of recommended users always contains more males than females, even though some

movies may be individually preferred by females.

Distortion 2: the target distribution q for minority classes may be under-recommended for

majority-preferred items. For example, suppose movie i is a male-preferred movie, and the

male-female ratio of users who have already watched movie i is 90%:10%. There will be fewer

females (even much less than 10%) in i’s predicted target customers.

Distortion 3: the target distribution q may unexpectedly differ from the appropriate distri-

bution. For example, if i is an R-rated movie, the predicted target customer set may include a great

number of children using conventional recommenders.

In this chapter, we focus on these types of target customer distortion problems, where the

distribution and composition of target customers differ much from the desired ones, that arise in

recommenders. Recent research has examined related issues in the distribution challenge from the

user’s perspective through calibrated recommendations, to ensure that users are exposed to a diverse

recommended list of items [18]. However, there is a gap in viewing this distribution challenge from

the item’s perspective. That is, what is the distribution of customers that are targeted for each item?

Concretely, we first introduce an approach to identify the target customers for each item (Section

4.1), which is challenging since recommenders are typically structured to reveal what each user

prefers (rather than what users are targeted by each item). We conduct a data-driven study in Section

4.2 to reveal several distortions that arise from conventional recommenders. Toward overcoming
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these issues, in Section 4.3, we propose a target customer re-ranking algorithm – U2I-Calibration

– to adjust the population distribution and composition in the Top-k target customers of an item

while maintaining recommendation quality. Next, in Section 4.4, we apply this proposed algorithm

onto the MovieLens 1M dataset [96], and evaluate the distribution of users and the quality of

recommendation, then discuss its merits and drawbacks. Last but not least, we summarize this work

in Section 4.5.

4.1 Preliminary

To address the target customer distortion problem, we first need to obtain the target customers

of an item predicted by a conventional recommender system. With these target customers, we could

then identify the distortions that occur.

Given a user set U , an item set I, and a binary user-item interaction matrix H ∈ N|U|×|I|

(where Hu,i = 1 indicates that user u ∈ U has watched movie i ∈ I for example), traditional

recommenders output predicted recommendation results which we represent as a score matrix

D ∈ R|U|×|I|. Each value Di,j expresses the predicted score from user u ∈ U to item i ∈ I.

To obtain the Top-k recommended items for user u, we can return the first k items with the

largest predicted score in row Du,_, calculated as follows (↘ symbolizes descending sort):

topU(u, k) = arg sort
↘,k

〈Du,1,Du,2, ...,Du,|I|, 〉 (4.1)

A straightforward idea is using the same way to obtain the Top-k predicted target customers of

an item, directly from the score matrix D. However, by leveraging the conventional personalized

recommenders, e.g., [43, 48, 109, 110, 111, 112], we cannot directly compare the predicted scores

in a column (for one item) in the score matrix, due to the different users’ bias. That is, for example,

a higher predicted score for user-item pair (u1, i) does not necessarily indicate that u1 likes item

i more than another user u2 who has a lower predicted score for i, because u1 and u2 may have

different scoring scales.

Therefore, to obtain the Top-k predicted target customers of an item, we should first normalize

D column-wise. Instead of using the predicted value, we normalize D using the rank information
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from a user to an item. We map each value Du,i to its descending rank order in the row Du,_, and

define a ranking matrix R ∈ N|U|×|I| mapping scores to ranks from D. For example, if a row in D

is 〈0.9, 0.3, 0.6〉, the mapped row in R should be 〈1, 3, 2〉. Values of R are integers between 1 to

|I|.

On the one hand, from the user’s perspective, each value of the ranking matrix, Ru,i represents

u’s preference rank to i among all items. Therefore, the Top-k recommended items for a user u

could also be represented as follows (↗ symbolizes ascending sort):

topU(u, k) = arg sort
↗,k

〈Ru,1,Ru,2, ...,Ru,|I|〉 (4.2)

On the other hand, from the item’s perspective, each value of the ranking matrix, Ru,i, represents

the preference degree from user u to this item i among all users. Target customers are the users who

are most potentially interested in an item (with highest preference degree). Now, the Top-k target

customers for an item i could be represented as:

topI(i, k) = arg sort
↗,k

〈R1,i,R2,i, ...,R|U |,i〉 (4.3)

Furthermore, we know each row, Ru,_, represents the preference ranking given from a user u to

each item i ∈ I . Suppose values in the originally predicted recommendation matrix D are different

from one another, and the values in Ru,_ must be from 1 to |I|. However, if we vertically observe

R, we can find the values in column R_,i may be identical to one another, and the value range is

not necessarily from 1 to user size |U|. For instance, assuming there is a trendy item ihot which has

been set as many users’ first priority, so that the column R_,ihot should contain many “1”s and the

average (or median) of R_,ihot could be much less than a column for an unpopular item. Keeping

this observation in mind, we will focus not only on all item’s class distribution but also on popular

items.

4.2 A Data-driven Study of Target Customer Distortion

In this section, we focus on three examples from a real-world dataset, and observe the distortion

between the desired class distribution (denoted as p) and the class distribution of predicted Top-k
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target customers (denoted as q) for an item.

4.2.1 Dataset

We adopt the MovieLens 1M dataset [96], which contains 1 million user-movie interactions

collected from 6,040 users (U ) and 3,706 movies (I). We only consider user-item interactions rather

than the explicit ratings, i.e. all interacted user-movie pairs will be considered as 1. In addition,

for each user, this dataset contains user profile information, including age, gender, and occupation,

which could help us to analyze the class distribution of the audience. We now start from gender

and age as the concerned demographic classes in the beginning to identify the three distortions

discussed before.

For clarity in presentation, we adopt Bayesian Personalized Ranking (BPR) [109], one of the

most influential and foundational personalized recommender algorithms. Experiments with other

tested algorithms show similar results; our emphasis here is on the general problem of target

customer distortion that can manifest in recommenders that optimize for engagement metrics

without consideration of the overall item target distribution. We apply BPR and obtain the predicted

user-item interaction matrix D. Through the transformations introduced in Section 4.1, we find

the predicted target customers for each item. In the following analysis, we would like to observe

the class distribution of the Top-k target customers, topI(i, k), of certain items. Intuitively, we

expect the predicted class distribution q of target customers to match the distribution p of existing

users in the training set of an item. To this end, we sort all users who interacted with an item by

their timestamps. Next, for each item, we select the first 60% interactions as the training set and

randomly select half of the rest data as validation set (20%), then, use the remaining 20% as the test

dataset.

4.2.2 Examples of Target Customer Distortion

Intuitively, we expect that the desired class distribution p and the predicted class distribution q

should be as similar as possible. However, following the three distortions defined before, we find

there is a strong disagreement between the two distributions in many cases:
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Figure (4.1) The female ratio on some female-preferred movies. The dotted red line is the female ratio of
the entire dataset.†

Figure (4.2) The female ratio on some male-preferred movies. The dotted red line is the female ratio of the
entire dataset.†

Case 1: Fewer females are the target customers of female-preferred movies.

Figure 4.1 shows the gender distribution of 5 female-preferred movies in their training set (p,

blue bar), and corresponding distribution in their Top-k predicted target customer set (q, bars with

other colors). We observe that even though in the training set, females have much more interactions

than males with these movies, the predicted target customers still contain more males than females,

and for all settings of the Top-5, Top-10, Top-20, Top-50, and Top-100 target customers. One of the

reasons is due to the overall smaller ratio (29%) of females in the entire training set (refer to the

dotted red line). In this example of distortion, the recommender under-serves a large target customer

group (in this case, females).
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Figure (4.3) The children ratio on some R-rated movies. The dotted red line is the child ratio of the entire
dataset.†

Case 2: Few females are the target customers of male-preferred movies.

Figure 4.2 shows the gender distribution of five male-preferred movies in the training set and

Top-k target customer set. The historical training data show more males interacted with these

movies than females. In this case, it is expected that fewer females may be included in the target

customers set. But, this does not mean the recommender should ignore females in their Top-K

target customer set. In fact, even though females do watch these movies, however, in the predicted

result, there are few females in the Top-5 and Top-10. Although this situation is relaxed when we

select more candidates as target customers, the ratio of females is still much lower than the desired

one. In this example of distortion, the recommender under-serves a small-size class (in this case,

female), or sometimes ignores them completely. A similar phenomenon has also been analyzed

in Steck’s research from the user perspective [18]: some genres with a small portion will be less

recommended to a user.

Case 3: Children are target customers of R-rated movies.

Figure 4.3 shows the ratio of children (age under 18) for five R-rated movies. Although the

R-rated movie should not be targeted to children under 18-years-old, we still observe some cases

in our training set. As shown in Figure 4.3, the recommender includes a substantial portion of

children as target customers of R-rated movies. One of the hypotheses of the phenomena shown

in Case 1 and 2 is due to the female ratio (29%) over the entire dataset being lower than males
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(71%). However, the phenomenon of predicting more children as target customers of R-rated

movies surprisingly violates the aforementioned hypothesis. That is, in the entire dataset the ratio

of children (age under 18) is only around 4%, but the predicted ratio of children in target customers

of R-rated movies are much more than that. From this case, we can observe that in some cases

conventional recommenders may over-serve a tiny class (i.e., children).

4.3 Our Approach: U2I-Calibration

In Section 4.2.2, we have shown the predicted class distribution of target customers (q) strongly

disagrees with the expected one (p) recommended by using a conventional recommender. Intuitively,

one potential solution for these issues is to re-generate the Top-k predicted target customers set to

make the class distribution of target customers for an item fit the desired distribution. In many cases,

it may be reasonable to set the desired distribution p(o|i) as the class distribution in the training set.

Furthermore, there may be some special cases where we wish to manually control the distribution

p(o|i), e.g., setting p(o = child|iR−rated) = 0 to limit children from being recommended R-rated

movies.

Problem Statement: Given a predicted item-user interaction ranking matrix R by a conven-

tional recommender, a concerned class o (e.g., gender or age), and the desired class distribution

p(o|i), we aim to make the class distribution of predicted target customers, q(o|i), be as similar as

p(o|i) through a re-ranking process, while maintaining the original recommendation performance.

As many recommenders are trained in a pairwise manner, many studies state that one might not

be able to include calibration into the training [18]. Therefore, a common solution is re-ranking

the predicted list in a post-processing step, which has been widely used in calibrated machine

learning approaches [113, 114, 18]. In this section, we propose a post-processing approach for

target customer re-ranking – U2I-Calibration – to make the class distribution of target customers of

each item as close as the desired class distribution.
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Figure (4.4) U2I-Calibration: a target customer re-ranking algorithm: (1) from score matrix D predicted
by a conventional recommender, generate the original ranking matrix R; (2) from R generate the Top-k
recommended item set topU (u, k) for each user for later evaluation; (3) from R generate the Top-k target
customer set topI(i, k) for each item as well as the memory matrix M; (4) re-rank the Top-k target customer
set and generate a new target customer matrix Ti = topInew(i, |U|) and evaluate the distribution KL(p||q)
through comparing topInew(i, k) and topI(i, k); (5) from T and M generate the new ranking matrix Rnew; (6)
from Rnew generate the new Top-k recommended item set topUnew(u, k); and (7) evaluate the recommendation
by comparing topUnew(u, k) and topU (u, k).†

4.3.1 Class Distribution

We have introduced how to get the Top-k predicted target customers for each item i, topI(i, k),

from the ranking matrix R (refer to Section 4.1). From the user set topI(i, k), we can now analyze

the Top-k target customer’s class distribution, such as gender and age. Given o as the class of

interest, where o could represent gender or age range (or other domain-specific class of interest), we

denote for each valid value c for o, the desired class distribution p(o = c|i) for item i as:

p(o = c|i) =

∑
u∈U ωu,i × p(o = c|u)∑

u∈U ωu,i
(4.4)

where p(o = c|u) and ωu,i are two binary variables: p(o = c|u) is 1 if u belongs to c, and ωu,i is 1 if

user u watched movie i in the training dataset, respectively. When o represents gender, we assume

given a movie i, the probability p(o = male|i) is the ratio of males to all people who watched this

movie, and p(o = female|i) is the ratio of females, supposing for simplicity in presentation here
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that male and female are mutually exclusive. For a given historical matrix H, the desired class

distribution p(o|i) could be a fixed number (ratio) based on the historic interaction record. In some

special occasions, p(o|i) could also be manually set as a desired number, for example, we could set

p(o = child)|iR−rated) = 0 to expect that all children (age under 18) should not be recommended

R-rated movies.

Similarly, we could calculate the predicted class distribution, q(o|i), of predicted Top-k target

customers topI(i, k) for item i as follows:

q(o|i) =

∑
u∈topI(i,k) p(o|u)

k
. (4.5)

Ideally, we expect the predicted class distribution q(o|i) to be as similar as the desired class

distribution p(o|i). Otherwise, if q(o|i) is quite different from p(o|i), then we will have identified

a target customer distortion. In most of the cases, we expect the desired distribution p(o|i) is

the historical distribution of existing users for an item i, as calculated in Eq. 4.4. We also allow

manually setting p in some cases. For example, as in the third case in Section 4.2, some children (age

under 18) watched the R-rated in our training dataset so that the distribution of p(o = child|i) ≥ 0

for R-rated movie i. Even though, we still could manually force p(o = child|i) = 0 to avoid

recommending R-rated movie i to children by ranking all children in the very back of the potential

relative user list of i.

To compare the similarity/distance between two distributions p(o|i) and q(o|i), we use the

Kullback-Leibler (KL) divergence [115] as the metric, where KL(p||q) = 0 indicates the distribu-

tions p(o|i) and q(o|i) are exactly the same; and a larger KL(p||q) indicates they are opposite of

each other.

4.3.2 KL-weighted Top-k Target Customers

In Section 4.1, we showed how to get the Top-k predicted target customers topI(i, k) from the

ranking matrix R. To memorize the preference priority from each user u ∈ topI(i, |U|) to item i,

we introduce a memory matrix M ∈ N|I|×|U|:

Mi = sort
↗
〈R1,i,R2,i, ...,R|U|,i, 〉 (4.6)
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recalling that R(u,i) is the rank of item i in user u’s priority list.

To re-rank the Top-k most likely target customers and let the class distribution of target customers

q to fit our desired distribution p, we leverage maximum marginal relevance (MMR), which can

provide precise re-ranking results [116]. We store these re-ranked results into the new target

customers matrix T ∈ N|U|×|I|, so that the new Top-k predicted target customers for item i, i.e.,

topInew(i, k), is the first k elements (users) in ith column of T. We could obtain the optimized new

target customer set, Ti, for item i as follows:

Ti = arg max
Ci⊆topI(i,|U|)

(1− λ)× r(Ci)− λ×KL(p||q(Ci)) (4.7)

where λ ∈ [0, 1] is the trade-off between the original recommendation results and the distribution

metric, C is the current optimal subset of re-ranked target customers, and recommendation score

r(C) is calculated from the ranking (priority) of user u ∈ C in item i’s original target customers list:

r(Ci) =
1

|Ci|

∑
u∈Ci

1

Ru,i + 1

 (4.8)

Through the re-ranking process, a user’s ID can be stored in a column Ti per step, from top to

bottom.

4.3.3 Top-Z Selection Mechanism

To add each user into Ti, a traditional re-ranking method would go through the entire original

target customer list, topI(i, |U|) with size of |U|), then select the one with the most optimal KL-

weighted score. To save running time and maintain prediction quality, instead of going through the

entire list of topI(i, |U|), we only consider the Top-Z users in topI(i, |U|); in our experiments, we

set Z as 30 times the number of valid values for o (e.g., Z = 60 for o ∈ Gender).

The benefits of only selecting from Top-Z users in the current topI(i, Z) rather than the entire

user set are not only significantly speeding processing time (Z � |U|), but also further ensuring

recommendation quality. That is, we need not engage our re-ranking algorithm to choose the user in

the bottom of topI(i, |U|), although it may slightly improve KL(p||q).

42



4.3.4 Rebuild the Rank Matrix for Users

In Section 4.1, we introduced how to transform D→ R→ topI(i, k). As every step is a linear

transformation, the entire process can be reversed. That means from the re-ranked target customers

matrix T where Ti = topInew(i, |U|), we could reverse the process through T→ Rnew and generate

the new version of the ranking matrix Rnew. Specifically, leveraging the re-ranked target customer

matrix T and the original memory matrix M, we could build the new ranking matrix Rnew by:

Rnew
u,i = Mv(where Ti,v=u),i (4.9)

In this way, the new Top-K recommended items for a user u could be easily calculated by:

topUnew(u, k) = arg sort
↗,k

〈Rnew
u,1 ,R

new
u,2 , ...,R

new
u,|I|〉 (4.10)

Also, to check the recommendation performance of the re-ranked matrix Rnew, we leverage the

widely-used evaluation metric, F−1@K. Through comparing with the original Top-k recommended

items to a user (in R) and the new Top-k recommended items for the same user (in Rnew) after

using the proposed target customer re-ranking algorithm, we can measure the impact on the

recommendation results after considering the class distribution of target customers. To illustrate

the workflow of the proposed re-ranking algorithm, Figure 4.4 walks step-by-step of our proposed

U2I-Calibration through a simple example.

4.4 Experiments and Results

In the previous sections, we have identified how the class distribution of target customers of an

item (q) and it’s desired distribution (p) can be distorted. To address this problem, we proposed a

target customer re-ranking algorithm – U2I-Calibration. In this section, we apply U2I-Calibration

onto the MovieLens dataset introduced in Section 4.2, and evaluate the results from both perspectives

of distribution bias and recommendation accuracy.

To match the result analysis in Section 4.2, we use BPR as the base of our target customer

re-ranking algorithm. It is important to note that the proposed algorithm is a post-processing solution

which could be applied upon any conventional recommenders. Here we use BPR as a representative.
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We first apply BPR onto our training dataset, and through the transformation introduced in Section

4.1 we obtain the Top-k predicted target customers topI(i, k) for each user i. Through applying the

proposed re-ranking approach onto topI(i, k) we now have the re-ranked new Top-k predicted target

customers topInew(i, k) for i. Furthermore, we can also obtain users’ Top-k recommended items

before and after applying the re-ranking approach, i.e. topU(u, k) and topUnew(u, k), respectively.

4.4.1 Bias of Class Distributions of Target Customers

(a) All items

(b) Popular items

Figure (4.5) KL(p||q) of class distributions of target customers after applying U2I-Calibration.†

First of all, we compare the desired class distribution p with topI(i, k) and topInew(i, k), respect-

ively. Figure 4.5a shows the score of the distribution metric KL(p||q) with different settings of λ,

in two cases, i.e., o ∈ Gender and o ∈ Age, for all items. In both cases, we observe that KL(p||q)

decreases with the increase of λ. The difference among these two cases are: comparing with the

44



Figure (4.6) The adjusted ratios of (a) females on sample female-preferred movies, (b) females on sample
male-preferred movies, and (c) children on sample R-rated movies before and after applying U2I-Calibration,
in the setting of λ = 0.5. The dashed lines are the corresponding desired p.†

case of o ∈ Gender, KL(p||q) is harder to converge in the case of o ∈ Age, and the KL(p||q) is

still far from 0 when we set the largest λ in our experiment. This is because we choose the optimal

user u in the Top-Z candidates of original topI(i, k) each interaction, instead of the entire user set.

Within an extreme condition, Top-Z candidates do not contain an optimal choice to improve the

current KL(p||q). Such a phenomenon becomes even more evident when the class contains more

valid values, i.e., there are 7 valid values for Age and 2 valid values for Gender.

Recalling our Top-Z candidates mechanism, in the case of the small size of class (e.g., Gender),

the Top-Z candidates mechanism performs well due to the fast processing speed, high recommend-

ation accuracy, as well as almost unharmed KL(p||q) value. However, as we can see, with the

growing size of class, the effect caused by this selection mechanism to KL(p||q) will be more

obvious.

We also observe that, KL(p||q) with a smaller k drops more quickly and converges more slowly

with the growth of λ, than KL(p||q) with a larger k. This is due to the original ratio of one class
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in the entire user set. Given a user set contains 10 females and 90 males and desired distribution

f
m

= 1
2
, the Top-10 target customers with the expected distribution should obviously be easier to

satisfy than the Top-100 target customers.

Figure 4.5b shows KL scores of popular items. Here, we define the popular items as items

in users’ Top-k preference list. Comparing with the class distribution of all items (refer to Figure

4.5a), similar downtrends are observed: KL(p||q) will decrease with the growth of λ. However,

the KL(p||q) is always lower for popular items than the one for all items, especially when λ is

quite small. This observation indicates that a traditional recommender brings more bias of class

distributions for unpopular items.

Furthermore, Figure 4.6 shows the re-ranked Top-k target customers using our re-ranking

algorithm of those examples we showed in Section 4.2, in the setting of λ = 0.5. It is not surprising

that the re-ranked Top-k target customers fit the desired distribution. A reasonable portion of

females are included in to corresponding movie’s target customer set (refer to Figure 4.6a and 4.6b).

And no child will be set as target customers of R-rated movie by setting the desired distribution

p(o = children|iR−rated) = 0 (refer to Figure 4.6c).

4.4.2 Influence of Recommendation Accuracy Cased by Re-ranking

There is an inherent trade-off between a reasonable class distribution and an accurate recom-

mendation. We already showed good results of the class distribution of target customers for an item

using the proposed U2I-Calibration algorithm. Next, we show how recommendation accuracy is

affected.

Figure 4.7 shows the F-1 score of user-viewed Top-k recommendations after applying U2I-

Calibration optimized for gender and age class distribution, respectively. As we can see, in the

case of optimizing gender distribution, with the growth of λ, the recommendation accuracy is

almost unaffected. Taking the benefits of class with fewer valid values, the re-ranking is extremely

slight, with little impact on F-1. Surprisingly, even in the case of class with more valid values,

e.g., Age, the recommendation accuracy only drops sightly by taking the benefit of the Top-Z

selection mechanism. From an item-viewed perspective, some “ranking metrics” may be affected,
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Figure (4.7) F-1 Score only mildly affected after applying U2I-Calibration.†

e.g., NDCG. However, NDCG is not always the appropriate ranking metric for target customer

prediction, because target customers are usually considered as a group, e.g., group ads injection

[117].

4.5 Summary

In this chapter, we focus on the distribution bias of predicted target customers. We first conducted

a data-driven study in to reveal several distortions that arise from conventional recommenders. Then,

we proposed a target customer re-ranking algorithm – U2I-Calibration – for addressing the target

customer distortion problem. Experimental results suggested our proposed method can effectively

adjust the class distribution of the target customers for items toward a desired distribution, thereby

mitigating the distortion problem.
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5. RABBIT HOLES AND TASTE DISTORTION: DISTRIBUTION-AWARE

RECOMMENDATION WITH EVOLVING INTERESTS ‡

In the previous two chapters, we proposed our methods to mitigate the estimation bias for

items with different ratings and the distribution bias of predicted target customers. Specifically,

Chapter 4 focused on the distribution bias from a user’s perspective, and proposed U2I-Calibration

to address the target customer distortion problem. In this chapter, we turn to the item’s perspective

and introduce the next contribution of this dissertation which addresses the item’s categorical

distribution bias of the predicted user’s taste.

One long-standing challenge in recommender systems is the rabbit hole effect [118, 119, 120]

– a representative instance of an item’s categorical distribution bias: as the system evolves, the

recommended results may concentrate on the main areas of interest of a user, while the user’s

lesser areas of interest can be underrepresented or even absent. By narrowing down a user’s interest

areas and limiting exploration of new areas, this rabbit hole effect can lead to undesirable (and

often unforeseen) outcomes, raising concerns of echo chambers [18], fairness [19, 20, 121, 122],

and diversity [22, 23]. In one extreme direction, O’Callaghan et al. observed that users accessing

extreme right video content are likely to be recommended further extreme right content, leading to

immersion in an ideological bubble in just a few clicks [120].

To address this rabbit hole effect, there are two main research directions: (i) diversity-focused

recommendation, e.g., [82, 83, 84, 22, 85, 86]; and (ii) distribution-aware recommendation, e.g.,

[18, 77, 123]. Diversity-focused recommendations aim to introduce the diversification of users’

interests in the recommendations. Some diversity-focused approaches may use the category of

an item or the genre of a movie as an “interest area” to cover more diverse aspects [87, 88].

Other methods eschew such explicit aspects in favor of identifying latent aspects as the basis

of diversification [89]. In another direction, distribution-aware recommendation aims to ensure
‡Reprinted with permission from “Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with

Evolving Interests” by Xing Zhao, Ziwei Zhu, and James Caverlee, 2021. Proceedings of the Web Conference 2021.
Copyright 2021 by ACM. DOI: https://doi.org/10.1145/3442381.3450099
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that a user’s prior taste distribution (i.e., the distribution of interest areas) are reflected in the

recommendations that a system makes, so that the system neither over-emphasizes main interest

areas, nor under-serves lesser areas. For example, consider a user who historically prefers comedies

to dramas by 2:1. A distribution-aware recommender would aim to make recommendations follow

a similar ratio, whereas a conventional recommender might incrementally focus on comedies

to the detriment of dramas. Such an approach has proven to be an important building block for

recommendation tasks [18, 77, 123], and has attracted considerable attention in the machine learning

community [124, 55].

Although both diversity-focused recommenders and distribution-aware recommenders may help

mitigate the rabbit hole effect, they further introduce a new taste distortion problem – another

representative instance of item’s categorical distribution bias in the recommendations: the taste

distribution in recommendation results differs from a user’s actual tastes. Diversity-focused

recommenders aim to cover as many interest areas as possible in recommendations rather than

targeting a user’s future taste distribution, resulting in the taste distortion problem. Distribution-

aware recommenders enforce that a user’s taste distribution exactly matches the user’s prior ones

based on the assumption that this distribution is fundamentally static (i.e., without considering the

dynamic changes and shifts of user’s interests), leading to the taste distortion issue as well.

Figure (5.1) A sample user’s taste distribution on the training set (blue, being the target of the distribution-
aware recommendation), BPR predicted results (orange), xQuAD predicted results (green), and testing
set (red, being the ground truth). Results suggest that none of these recommenders can provide the taste
distribution in recommendations close to the ground truth.‡

To illustrate this taste distortion problem, in Figure 5.1, we show a random user in the MovieLens-
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1M dataset, where her view history is split into training and testing in chronological order. The

x-axis in Figure 5.1 lists the genres, and the y-axis is the ratio of the current genre in this user’s

entire taste distribution (hence, the sum is 1). Blue bars show the taste distribution of this user in

the training data. As we can see, this user shows great interest in drama movies much more than

others in the training set. The recommendation result from a traditional recommender (BPR [109]

in orange) hints at the problem of the rabbit hole effect, as its recommendations skew towards drama

even more than what is in the training distribution. A diversity-focused method (xQuAD [125] in

green) brings more diverse recommendations comparing with the traditional recommender, while

a distribution-aware recommender aims to maintain the training distribution (in blue). However,

none of these recommendation results are close to the user’s real taste distribution in the next

stage, which is shown by the red bars and illustrates this user’s strong interests in the horror and

thriller genres.

Hence, our objective is to simultaneously mitigate both the rabbit hole effect and this taste

distortion problem. But, how can we achieve this objective even in the presence of dynamically

shifting tastes? And how can we integrate methods to address these problems into existing recom-

menders (including both traditional and recent neural-based ones) without re-training the original

recommendation pipeline? Since distribution-aware recommenders do not only address the rabbit

hole effect, but also offer benefits of interpretability (by respecting a user’s existing preferences)

and provide possibilities to control the diversification to avoid undesirable recommendation, we

focus in this chapter on new distribution-aware methods that can also counter the taste distortion

problem. Concretely, we propose a new taste-enhanced calibrated recommender called TecRec that

predicts a user’s shift in tastes, and then incorporate these shifts into a post-ranking framework for

an improved distribution-aware recommendation.

Furthermore, many studies have shown that distribution adjustment and accurate recommenda-

tion tend to trade-off with each other [78, 18]. That is, conventional distribution-aware recommend-

ations will lead to worse prediction accuracy. However, considering users’ dynamic taste shifting

enables our proposed method to provide a better estimation of a user’s real taste distribution. Thus,
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one additional benefit of our proposed recommender is the potential of even better recommendations

while mitigating the rabbit hole effect and the taste distortion problem.

In sum, this chapter studies the potential of a calibrated recommendation in the presence of

dynamic tastes:

• First, we empirically reveal the taste distortion problem through a data-driven study over

multiple datasets, to show how taste preferences dynamically shift and how a calibration

mechanism should be designed with these shifts in mind.

• Then, we propose a Taste-Enhanced Calibrated Recommender that is designed to firstly

predict a user’s shift in preferences, and then incorporate these shifts into a post-ranking

framework for an improved distribution-aware recommendation.

• Finally, we compare the proposed method against traditional recommenders, sequential

recommenders, diversity-focused recommenders, and conventional distribution-aware recom-

menders. We show how the taste-enhanced calibration is complementary to these approaches’

goals and can result in a high-quality recommendation with that mitigates the “rabbit hole

effect” and “taste distortion” while evolving with a user’s dynamically shifting tastes.

5.1 Preliminaries

Suppose we have user set U , an item set I, and a binary user-item interaction matrix H ∈

{0, 1}|U|×|I| (where Hu,i = 1 indicates that user u ∈ U has interacted with item i ∈ I for

example). H is split into tRain (HR ∈ {0, 1}|U|×|I|), Validation (HV ∈ {0, 1}|U|×|I|), and Test

(HT ∈ {0, 1}|U|×|I|) sets by a time-series order. Furthermore, we have explicit labels of interest on

the items (e.g., genre, category, etc.), which we refer to as a genre set G. As one item may belong to

more than one genre, each item i has a genre vector ci:

ci =
[vi,g1

Σ
,
vi,g2
Σ
, · · · ,

vi,g|G|

Σ

]
(5.1)

where gj ∈ G, Σ =
∑
gj∈G

vi,gj , and vi,gj is a binary variable where vi,gj = 1 if i belongs to genre gj .
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Taste Distribution on Training and Testing Sets. In the following, we denote the ground truth

taste distribution for a user as q and the taste distribution in the training set as p.

We define u’s taste ratio for genre gj in the training set as pu,gi:

pu,gj =

∑
i∈IH

R
u,i × ci,gj∑

i∈IH
R
u,i

(5.2)

where HR
u,i is the entry in uth row and ith column of HR, and HR

u,i is 1 if user u interacted with item

i in the training dataset. Thus, user u’s entire taste distribution is:

pu =
[
pu,g1 ,pu,g2 , · · · ,pu,g|G|

]
. (5.3)

Similarly, we can compute user u’s taste distribution for genre gj in the test set as qu,gj and the

user’s entire taste distribution qu. For a given historical matrix H, user u’s taste distribution in the

training set pu,gi and in the testing set qu,gj could be a fixed ratio based on the historic interaction

record.

Taste Distribution on Top-K Predicted Results. We represent a recommender’s predicted results

as a score matrix D ∈ R|U|×|I|. Each value Du,i expresses the predicted score from user u ∈ U to

item i ∈ I. To obtain the Top-k recommended items for user u, we can return the first k items with

the largest predicted score in row Du,:, calculated as follows (↘ symbolizes descending sort):

top(u, k) = arg sort
↘,k

[
Du,1,Du,2, · · · ,Du,|I|

]
(5.4)

Similarly, we calculate the predicted taste distribution, q̃Top−k
u , of predicted Top-k recommended

items top(u, k) for user u as follows:

q̃Top−k
u =

1

k

∑
i∈top(u,k)

ci. (5.5)

5.2 A Data-driven Study of Taste Distortion

The key idea of distribution-aware recommenders is to incorporate a user’s taste distribution

into the recommendation results to potentially benefit recommendations that fit a “desired” taste

distribution. However, a strong assumption that has been widely used is the target distribution

should fit the distribution in the training set (i.e., the prior data), while ignoring the dynamic shifting
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#User #Item #Genre #Interaction Density(%)

ML-1M 6,040 3,706 18 1,000,209 4.468
ML-20M 138,493 26744 20 20,000,263 0.540

MovieTweets 60,283 34,437 29 814,504 0.039

Table (5.1) Dataset statistics for taste distortion analysis.‡

nature of taste preferences. In this section, we conduct a data-driven study into the resulting taste

distortion problem. Concretely, we define the taste distortion problem as follows:

Taste distortion problem. Consider a user u with a time-series of interactions with several items.

The taste distribution in the prior (i.e., training data) is pu, the true distribution in the future (i.e.,

testing data) is qu, and the taste distribution of Top-k recommended items for u by a recommender

system is q̃Top−k
u . We define the taste distortion as ϕ(q̃Top−k

u ,qu), where ϕ(·) denotes a distance

measure, e.g., Kullback-Leibler (KL) divergence [115]. The larger this value is, the worse the

estimation of the taste distribution on the test set is.

5.2.1 Datasets and Setup

We adopt three datasets that contain clearly defined genres, which help identify a taste distri-

bution, and timestamps for considering the temporal shifts in these taste distributions. The first

dataset is the MovieLens-1M (abbr. ML-1M) dataset [96], which contains 1 million user-movie

interactions collected from 6,040 users and 3,706 movies. The second is the larger MovieLens-20M

(abbr. ML-20M) dataset [96], which contains 20 million user-movie interactions collected from

138,493 users and 26,744 movies. The third is the MovieTweets dataset [126], which contains

814,504 user-movie interactions collected from 60,283 users and 34,435 movies. Due to the sparsity

of MovieTweets dataset, we only consider users who have five or more interactions. More details

are shown in Table 5.1.

To analyze a user’s tastes across different genres, we consider user-item interactions (e.g., clicks,

plays) rather than explicit ratings, i.e., all interacted user-movie pairs are considered as 1. For each

movie, we use the genre available in each dataset: ML-1M contains 18 genres, ML-20M contains 20
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genres, and MovieTweets contains 29 genres. One movie may belong to one or several genres. This

genre information lets us build each user’s explicit taste preference distribution. We sort each user’s

interaction history in chronological order and split them into Training (60%), Validation (20%), and

Testing (20%) sets. By splitting in chronological order, we emulate what information is actually

available to a recommendation system (rather than considering a random split of the data that will

mix past and future interactions).

In the following, we study the taste distortion problem in the context of a standard recommender,

Bayesian Personalized Ranking (BPR) [109], and the conventional distribution-aware recommender

(CaliRec) [18]. Experiments with other tested algorithms show similar results; our emphasis here is

on the general problem of taste distortion that can manifest in recommenders.

5.2.2 Taste Distortion in Recommendation

We begin with a look at the taste distortion problem through analysis over all three datasets. To

compare the distortion between two taste distributions a and b, we use the Kullback-Leibler (KL)

divergence [115] as the distance measure ϕ(·), where KL(a||b) = 0 indicates the distributions agj

and bgj are exactly the same for all gj ∈ G; and a larger KL(a||b) indicates they are more distant.

KL(·) is defined as below:

KL(a‖b) = −
∑
gj∈G

agj log
bgj
agj

. (5.6)

Figure 5.2 shows the KL-divergence for the taste distribution on the training dataset (p) with

the ground truth taste distribution on the testing dataset (q), CaliRec results (q̃Top−100
BPR+CaliRec), and

BPR results (q̃Top−100
BPR ). We set the trade-off parameter λ = 0.9 and the basis recommendation

result base = BPR for CaliRec. As we can see, the taste distributions on the testing set are far from

the ones on the training set. Encouragingly, CaliRec does significantly improve on BPR, since

it is focused on matching the distribution in the training data. However, the training data is not

reflective of the distribution in the testing data, and so this approach may bring worse accuracy in

the recommendation.

For a comparison from another perspective, Figure 5.3 shows the taste distribution on the testing
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Figure (5.2) KL-Divergence between the taste distribution in training set (p) with the ones in testing set
(q), in CaliRec results (q̃Top−100

BPR+CaliRec), and in BPR results (q̃Top−100
BPR ).‡

Figure (5.3) KL-Divergence between the taste distribution in ground truth (q) with the ones in training set
(p), in CaliRec results (q̃Top−100

BPR+CaliRec), and in BPR results (q̃Top−100
BPR ).‡
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Figure (5.4) Trends of a sample user’s taste overtime in the training set. As time goes by, this user changed
her main taste through the path of Mystery→ Sci-Fi→ Comedy→ Romance→War→ Drama→ Horror.‡

set (q) versus the taste distribution on the training set (p), the CaliRec results (q̃Top−100
BPR+CaliRec), and

the BPR results (q̃Top−100
BPR ). Similarly, we observe a large difference of the distribution between the

training set and testing set (note the KL divergence may differ between KL(a||b) and KL(b||a)).

Both CaliRec and BPR return a poor estimation of the (unknown) taste distribution in the testing set,

which is our ultimate goal. These results validate our hypothesis that both traditional recommender

systems and distribution-aware recommender systems could under-serve the ground truth taste

distribution. However, it also indicates that a better estimation of taste distribution may produce

more accurate recommendation results.

5.2.3 An Example of Taste Distortion

Figure 5.4 clearly shows the time-series change of the tastes of a random user in the ML-1M

dataset. Each row indicates the frequency of the genres the user interacted with over time. We

can observe that as time goes by, this user changed tastes through the path of Mystery→ Sci-Fi
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Figure (5.5) Recommendation results using CaliRec with prior and real taste distribution. Comparing with
the BPR results (λ = 0), this “oracle” result is consistently better for all trade-off settings.‡

→ Comedy→ Romance→War→ Drama→ Horror. This user’s jump in taste over time goes

against the assumption that the taste distribution derived from a user’s entire training set should

be the target preference for the distribution-aware recommendation. Ignoring or underestimating

the time-series trends and change of users’ preferences could bring serious estimation errors to the

distribution-aware recommendation results.

5.2.4 “Oracle” CaliRec with True Distribution

Finally, we explore the potential of improving distribution-aware recommendation if the real

taste distribution was known. That is, given a user u, if we know the real (though unknown)

distribution for u in the next stage, how does a conventional distribution-aware recommender

perform? In other words, we would like to use the real taste distribution qu instead of the prior taste

distribution pu as the target. Of course, qu is not visible to a recommender in practice; therefore,

we refer to this as an “oracle” result. Figure 5.5 shows the ideal results by CaliRec using the

real taste distribution in the test set. As we can see, comparing with the base results (λ = 0, i.e.,

unchanged BPR result), this “oracle” result is significantly better on all trade-off weight settings.

This result indicates that a better estimation of the user’s taste distribution would bring improved
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distribution-aware recommendation results.

5.3 Our Approach: Taste-Enhanced Calibrated Recommendation

Our ultimate objective is mitigating both the rabbit hole effect and taste distortion simultaneously.

Since the distribution-aware recommendation is inherently designed to alleviate the rabbit hole

effect, can we also mitigate taste distortion? One idea is to dynamically learn the trends and

shifts of each user’s taste distribution to better estimate future taste preferences. Previous studies

often learn a user’s preference from the interactions in an embedded space, e.g., [127, 56]; here,

rather than the embedded preference, we focus on predicting a user’s explicit preferences based

on the given categories of items. In the following, we introduce a Taste-enhanced calibrated

Recommendation (TecRec) that is designed to learn a user’s shift in preferences (Section 5.3.1),

and then incorporate these shifts into a post-ranking framework for improved distribution-aware

recommendation (Section 5.3.2).

5.3.1 Learning Taste Distribution

Previous studies in distribution-aware recommendation assume a user’s taste preference should

be similar to the historical preference in the entire training set or in the latest time window [18].

Yet, our observations in Section 5.2 show that a user’s preferences frequently shift in each observed

time window. Thus, in the following, we show how to predict a user’s taste distribution q̂ in the

next stage. Inspired by the time-series trends and changes of users’ preferences (recall Figure 5.4),

we propose the TecRec distribution prediction component to learn the evolving taste distribution of

users, towards overcoming the taste distortion problem. We explore the potentials of neural network

approaches to learn these taste shifts.

5.3.1.1 User’s Taste Sequence

For each user-item interaction (u, i) for u ∈ U and i ∈ I, we transform the user-item pair

into user-genre (u, ci) pair (refer to Equation 5.1). In this way, every user’s historical interaction

data could be transferred to a 1 × |G| vector, which represents the user taste distribution in this

timestamp.
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Figure (5.6) TecRec distribution prediction component, which takes the user’s z prior time-series taste
distributions as input, and outputs the predicted taste distribution in the next stage.‡

To summarize a user’s taste distribution in each “stage” (over some duration, which may contain

several items), we employ a hyper-parameter step size, β. That is, we slice the N user-item

interaction history into N
β

stages, and each stage summarizes sequential β items this user interacted

with. The taste distribution of each stage – t – can then be calculated as:

pu,t =
1

β
×

t∑
j=t−β+1

Mu,i,j × ci (5.7)

M ∈ N|U|×|I|×|T | is a time-expanded binary 3-D matrix from H, where Mu,i,j = 1 indicates user

u and item i have an interaction at time j.

In addition, we use a hyper-parameter window size, z, that is how many stages we use to predict

the taste distribution at the next stage t. Our objective is: given a user’s temporal taste distributions

[pu,t−z,pu,t−z+1, · · · ,pu,t−1], to predict the user’s taste distribution in the next stage, q̂u,t.

5.3.1.2 Recurrent Model

Recurrent neural networks have shown great success in capturing the implicit dynamics of

user-item interactions in recommender systems (e.g., [56, 128, 129]). We now explore the potential
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of using recurrent neural networks to learn the trends and changes of a user’s explicit taste. To

better understand the structure of TecRec distribution prediction component, Figure 5.6 shows a

simplified model structure for predicting the taste distribution for the next stage, q̂t. To this end,

TecRec takes the user’s z prior time-series taste distributions, [pu,t−z, ..., pu,t−1], as an input.

In our task, both sequential events (inputs) and predictions (outputs) are the user’s explicit taste

preferences (i.e., ratio of each explicit genre), and this preference vector is highly dense with size

1 × |G|. For this reason, the prior preference sequence will directly join the next recurrent layer

without embedding.

We use ht to represent the latent vector at time t in the recurrent layer. A recurrent layer

consists of z recurrent units. Here, we consider three variants of recurrent units for the task of taste

preference prediction:

Traditional Recurrent unit (abbr. TRU) [130] takes the previous latent state ht−1 and current

input taste preference pt as input:

ht := σ(Wqpt + Whht−1 + b)

where W, b are the weights and bias term for each recurrent unit, and σ is a nonlinear activation

function (tanh in this chapter).

Gated Recurrent unit (abbr. GRU) [131] is a variant of traditional recurrent unit, which introduces

two more gates on each unit – an update gate zt and a reset gate rt – to control the long short-term

dependencies. The update gate zt decides how much information from previous time steps is going

to be retained, while the reset gate vt determines how much of the previous information is to be

forgotten with another recurrent state h̃t. Lastly, the output ht of the GRU cell at step t is the

weighted sum of the current and the last hidden state.

Long Short-Term Memory unit (abbr. LSTM-unit) is another variant of a traditional recurrent

unit that has been shown to outperform TRU on numerous temporal processing tasks [132, 133,

134, 135, 136]. Comparing with GRU, LSTM-unit introduces more gates: a forget gate to decide
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what information should be kept, and an output gate to decide what the next hidden state should

be. Each LSTM-unit ht consists of input gates it, forget gates ft, output gates ot and cell activation

vector ct at time t.

From the recurrent layer with recurrent units of TRU, GRU, or LSTM-unit, the final recurrent

unit ht−1 outputs a |G|-dimension vector, which will go through a dense layer and be activated by

the softmax activation function. After activation, the output vector – the predicted preference ratio

for each explicit aspect (i.e., a genre in our data) – is normalized into the same scale as the input,

where the sum of the vector is 1. This vector would then be our predicted taste distribution, q̂t, for

the next stage t, calculated by:

q̂t := softmax(Wdenseht−1 + bdense).

5.3.1.3 Learning and Evaluation

In the learning process, we adopt the Adaptive Moment Estimation (Adam) [104] method as

the optimizer to train the model, since it yields faster convergence compared to SGD. To compare

the output predicted distribution q̂u,t with the ground truth qu,t, we use a Kullback–Leibler (KL)

divergence loss function, shown below:

L(qu,t, q̂u,t) =−
∑
gi∈G

qu,gi,t × log
( q̂u,gi,t

qu,gi,t

)
(5.8)

Thus, given a regularization weight Φ and sample size N , the objective function with reg-

ularization for the model is to search for a choice of Θ (which includes all weights and bias

term):

argmin
Θ

1

N

∑
L(q, q̂) + Φ× ‖Θ‖2

F . (5.9)

Through this step, the optimal predicted taste distribution in the next state t, q̂u,gi,t ∀gi ∈ G will

be used in the post-ranking stage.
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Algorithm 1: TecRec Post-ranking Mechanism‡

Input: u, Du,:, q̂, λ, Z, k
Output: Tu ; // Recommendation for u from TecRec
Tu ← ∅;

d = arg sort
↘,Z

[
Du,1,Du,2, · · · ,Du,|I|

]
;

while |Tu|< k do

i∗ ← arg max
i∈d\Tu

(1− λ)×
∑

v∈Tu∪{i}

Du,v

|Tu|+1︸ ︷︷ ︸
accuracy term

−λ× ϕ
(

q̂,
∑

v∈Tu∪{i}

cv
)

︸ ︷︷ ︸
calibration term

;

d← d \ {i∗};
Tu ← Tu ∪ {i∗} ; // Update current optimal result

end
return Tu;

5.3.2 Post-Ranking Mechanism

As many recommenders are trained in a pairwise manner, many studies state that one might not

be able to include calibration into the training [18]. Therefore, a standard solution is post-ranking the

predicted list in a post-processing step, which has been widely used in machine learning approaches

[113, 114, 18]. Post-ranking approaches could be integrated into existing models without re-training

the original model pipeline, bringing great convenience in practice. Thus, we propose a post-

ranking mechanism that calibrates the recommendation result based on the learned “next stage”

taste distribution, toward overcoming the taste distortion problem. This approach is summarized in

Algorithm 1.

To obtain the calibrated results, TecRec takes as input a user u, predicted relevance scores

Du,:, u’s learned taste distributions q̂ (introduced in 5.3.1), a trade-off parameter λ, a candidates

boundary Z (introduced below), and a required recommendation length k. To re-rank the Top-k

most relevant items and let users’ taste distribution q̃TecRec be as close to our learned distribution q̂,

we consider the accuracy and closeness of distributions together for the ranking optimization. We

can obtain the optimized new item list, Tu, for user u as Algorithm 1 lines 3-6, where λ ∈ [0, 1]

is the calibration weight to control the balance between the original recommendation results and

62



the distribution metric, and recommendation score Du,: is provided from any base recommender

system. Directly using the KL-divergence as the calibration function ϕ(·) to find the optimal set Tu

is a combinatorial optimization problem and NP-hard [18]. Prior research [137] has shown that the

greedy optimization of this problem could be equivalent to the greedy optimization of a surrogate

submodular function. Hence, we can re-write the calibration term, ϕ(·), in Algorithm 1 Line 4 as

follows:

ϕ
(

q̂,
∑

v∈T∪{i}

cv
)

= KL
(

q̂||
∑

v∈Tu∪{i}

cv
)

= −
∑
gk∈G

q̂gk × log


∑

v∈Tu∪{i}
cv,gk

q̂gk


= −

(∑
gk∈G

q̂gk log
∑

v∈Tu∪{i}

cv,gk −
∑
gk∈G

q̂gk log q̂gk

)
= Entropy(u)︸ ︷︷ ︸

constant

−
∑
gk∈G

q̂gk log
∑

v∈Tu∪{i}

cv,gk

(5.10)

Therefore, updating the optimized Tu (Line 4) could be equivalent to:

i∗ ← arg max
i∈d\Tu

(1− λ)×
∑

v∈Tu∪{i}

Du,v

|Tu|+1

+ λ×
∑
gk∈G

q̂gk log
∑

v∈Tu∪{i}

cv,gk
(5.11)

where the greedy optimization of submodular functions achieves a (1− 1
e
) guarantee of optimality

(e is Euler’s number) [138].

Top-Z Selection for Post-ranking. To add each item into the calibrated recommendation results, a

traditional post-ranking method would go through the entire candidate item list, top(u, |I|) with the

size of |I|), then select the one with the most optimal KL-weighted score. To save running time

and maintain prediction quality, for each iteration to choose the optimal item to add into calibrated

recommendation results, instead of going through the entire list of top(u, |I|), we only consider

the Top-Z items in top(u, |I|), where Z is also a given hyper-parameter for Algorithm 1. In our

experiments, we set Z as 30 times the number of valid genres for G (e.g., Z = 540 for |G|= 18 in

the MovieLens-1M dataset).
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The benefits of only selecting candidates from the Top-Z items in the top(u, Z) rather than the

entire item set are not only significantly faster processing time (Z � |I|), but also further ensuring

recommendation quality. That is, we need not engage our post-ranking algorithm with items on the

bottom of top(u, |I|), although it may slightly improve KL-divergence.

5.4 Experiments and Results

In this section, we conduct a series of experiments over the three datasets introduced in Sec-

tion 5.2.1. Our goal is to examine the proposed distribution-aware recommendation in the presence

of dynamic tastes, to achieve the ultimate goal of simultaneously mitigating both the rabbit hole

effect and the taste distortion problem. We focus on two main questions: How well can we mitigate

the taste distortion problem? And what impact does this have on recommendation?

5.4.1 Mitigating Taste Distortion

We begin by examining how well TecRec learns the evolving taste distribution of users. We first

discuss hyper-parameter tuning, in terms of the step size and window size. Then, we analyze the

results of TecRec with special attention to alternative approaches, including two diversity-focused

recommenders (xQuAD and SPAD), a traditional accuracy-based recommender (BPR), and a

popular sequential recommender system (SASRec).

To better reflect user’s taste distribution in a stage, we employ a hyper-parameter step size –

β – which selects consecutive β movies as a watching stage. βu = 1 treats every watched movie

as an individual series, which may not sufficiently express a user’s taste distribution at that time.

βu =
∑

i∈I HR
u,i treats all watched movies as one single series to reflect the user’s taste distribution

(in essence, the standard assumption in the literature). The objective of tuning this hyper-parameter

is to find an optimal value of step size to sufficiently express a user’s taste distribution and effectively

avoid the effects of outliers and noise.

5.4.1.1 Hyper-parameter Tuning

Figure 5.7 first shows the effects of step size on the KL-divergence. The result of hyper-

parameter tuning suggests the KL-divergence firstly decreases with the growth of step size β. After
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Figure (5.7) Hyper-parameters tuning for TecRec Distribution Prediction Component.‡
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a minimal value (β = 4 for ML-1M and MovieTweets and β = 8 for ML-20M), KL-divergence

sharply increases. Too small step size brings more outliers and noise into the training and may not

represent a user’s taste at a certain stage. Conversely, too large step size would flatten the taste

preference and may not have a strong ability to express the shift from one genre to another.

We also tune another hyper-parameter of the model – window size (z, or lag value). Unlike

the step size, which is to determine the number of movies in each window (stage), window

size determines how many prior windows (stages) should be used for prediction. Recall our

TecRec is a many-to-one recurrent model, which utilizes previous taste preference sequence –

[pt−z,pt−z+1, ...,pt−1] – as the inputs to predict the taste distribution in the next stage q̂t. Figure 5.7

also shows the effects of window size on the KL-divergence. Similar to the step size, a too-small

window size indicates there is no overlap in the training set, then it would be equivalent to not using

a time relationship between elements of the training set of taste sequence. However, due to the

limited number of user interactions, a too-large window size indicates we have to lose many cold

users in the training set, which would also harm the model’s training performance. In the following,

we set the window size z = 3 for ML-20M and MovieTweets dataset, and set z = 7 for ML-1M

dataset; and we set the step size β = 4 for ML-1M and MovieTweets and β = 8 for ML-20M,

based on the tuning results.

5.4.1.2 Comparison with Alternatives

To compare the learning performance of TecRec for predicting a user’s taste distribution, we

choose the three variants of the recurrent unit (TRU, GRU, and LSTM-unit) for TecRec and six

competitor methods: two widely-used assumptions (allTrain and lastTrain), an accuracy-driven re-

commender (BPR), a sequential recommender (SASRec), and two diversity-focused recommenders

(xQuAD and SPAD), briefly introduced as below:

• allTrain: this widely-used method assumes taste distribution should be the same as the

historical distribution in the training set;

• lastTrain: this method assumes the taste distribution in the next observed window should be
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Figure (5.8) Dynamic taste distribution prediction results.‡

similar to the latest time window in the training set;

• BPR: a traditional accuracy-driven recommender with a generic optimization criterion for

optimal personalized ranking [109];

• SASRec: a popular sequential recommender using a two-layer Transformer decoder to capture

user’s sequential behaviors and achieving state-of-the-art results [56];

• xQuAD: a diversity-focused recommender proposed in [125] adapted from the Query Aspect

Diversification framework [139], where user u’s preferences are formulated as a probability

distribution over aspects (i.e., genres);

• SPAD: a variant of xQuAD proposed in [86], which uses the same objective function and

greedy post-ranking approach as xQuAD, but uses sub-profiles as aspects to model the user’s

interests rather than item features.

Since the ground truth in the next window has a fixed size (i.e., β), for the two diversity-focused

recommenders and the sequential recommender, we measure the taste distribution from their Top-10

recommended results, i.e., q̃Top−10
xQuAD , q̃Top−10

SPAD , q̃Top−10
BPR , and q̃Top−10

SASRec. Recall that these methods aim for

diversity or to better capture a user’s dynamic shifts in preference; however, they are not designed

with recommendation distribution in mind, so the resulting recommendations will not respect the

requirements of taste distribution.

Figure 5.8 shows the results for dynamically learning and predicting users’ taste distribution in

the testing set for all three datasets. In terms of KL-divergence between the true taste distributions
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Figure (5.9) KL-divergence between the true distribution q with q̃Top−k
CaliRec and q̃Top−k

TecRec on all calibration
trade-off settings.‡

and the predicted ones, TecRec-LSTM performs the best among all baseline methods. First of

all, for the intra-comparison of the baselines, lastTrain performs worse than allTrain and most

others, which indicates users may not always follow the latest taste in the next watching stage.

TecRec-LSTM improves over 30%+ from allTrain and over 40%+ from lastTrain on all datasets.

Secondly, traditional diversity-focused recommenders, xQuAD and SPAD, perform worse than

the baseline allTrain, which indicates that these methods may improve the latent diversity of the

recommendation results; however, they do not follow the distribution-sensitive requirements of

distribution-aware recommendation. Similar results hold for BPR and the sequential recommender

SASRec. Thirdly, the time-series-based neural network models with three types of recurrent units

obtain significantly better results than the others, which suggests that the pattern of taste shifts

could be recognized and learned by these models. Of the three variants of TecRec, the one with

LSTM-unit results in the best prediction results (and so will be used in the discussions in Section

5.4.2), though the particular choice appears not to be critical.
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5.4.1.3 Calibration Trade-off λ

Recall that we can control the degree of calibration with λ, a “customized” knob to control the

influence of calibration which is widely used (e.g., [113, 18]). With a choice of λ = 0, we default to

the baseline recommender (e.g., BPR). Figure 5.9 shows the impact of calibration on both CaliRec

and the proposed TecRec in terms of the KL-divergence between the true taste distribution and the

taste distribution of final recommended items. Solid lines correspond to CaliRec, and dashed lines

for TecRec. As we can see, comparing with the results from CaliRec, the results by our proposed

methods have significantly lower KL-divergence on each calibration-weight settings. One of the

interesting observations from the three solid lines is, in both the BPR (λ = 0) and CaliRec (λ > 0)

results, a larger K is often accompanied by a better KL-divergence (meaning less taste distortion).

This may indicate that recommendation accuracy would be worse with a smaller K (recall that a

wrongly assumed taste distribution would result in worse recommendation accuracy), which we

will validate below. We also observe that the improvement from CaliRec is more impressive when

K is small, e.g., K = 5. For example, when λ = 0.5, the KL@5 is improved 37.7% (from 2.23 to

1.39), which is more than the improvement of KL@10 (24.1%) and KL@15 (15.9%). Besides, we

also observe that the KL-divergence could not be 0 due to the predicted error of taste distribution

and the Top-Z selection mechanism, even if we set a large calibration weight, e.g., λ = 0.99. Up to

now, TecRec shows the effectiveness and robustness to simultaneously ameliorate both the rabbit

hole effect and taste distortion. However, what impact does TecRec have on recommendation?

5.4.2 Improving Recommendation

Our previous experiments demonstrate the viability of mitigating the taste distortion problem

by predicted a distribution that is close to the real taste distribution, compared with two widely-

used assumptions (allTrain and lastTrain), an accuracy-driven recommender (BPR), a sequential

recommender (SASRec), and two diversity-focused recommenders (xQuAD and SPAD). Next, we

explore the impact on recommendation results using this predicted distribution. We consider two

variants of the proposed Taste-enhanced calibrated Recommender based on the two accuracy-driven
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Recall@10 NDCG@10
+ CaliRec + TecRec ∆Base ∆CaliRec + CaliRec + TecRec ∆Base ∆CaliRec

B
PR

λ =0 0.1182 0.1182 0.1975 0.1975
λ =0.25 0.1166 0.1244 +5.25% +6.69% 0.1939 0.2053 +3.95% +5.88%
λ =0.5 0.1106 0.1306 +10.49% +18.08% 0.1827 0.2198 +11.29% +20.31%
λ =0.75 0.0858 0.1370 +15.91% +59.67% 0.1687 0.2103 +6.48% +24.66%
λ =0.99 0.0264 0.0887 -24.96% +235.98% 0.1274 0.1763 -10.73% +38.38%

SA
SR

ec

λ =0 0.1396 0.1396 0.2368 0.2368
λ =0.25 0.1284 0.1426 +2.15% +11.06% 0.2252 0.2421 +2.25% +7.51%
λ =0.5 0.1172 0.1456 +4.30% +24.18% 0.2124 0.2527 +6.73% +18.99%
λ =0.75 0.1027 0.1458 +4.44% +41.97% 0.1912 0.2468 +4.25% +29.11%
λ =0.99 0.0610 0.1033 -26.00% +69.34% 0.1077 0.1718 -27.44% +59.55%

Table (5.2) Recommendation results, Recall@10 and NDCG@10 on ML-1M dataset by setting different
calibration weights. Columns ∆Base shows the improvement of our proposed TecRec from two basis
recommenders, BPR and SASRec. And ∆CaliRec shows the improvement from CaliRec.‡

recommenders: BPR and SASRec. Recall that the TecRec post-ranking component can be

adapted to the recommendation results of any base recommender without re-training.

For fair comparison, we consider the first stage – which contains β (step size, β = 4 for ML-1M

and Movie-Tweetings dataset and β = 8 for ML-20M dataset) movies – in the test set as the ground

truth. Since the length of ground truth data is fixed, we use Recall@K and NDCG@K as the

evaluation metrics.

Table 5.2 first shows the recommendation results on the ML-1M dataset (the other two datasets

present similar observations and results) comparing with CaliRec for different settings of the

calibration weight and the two base recommenders (BPR and SASRec). Column ∆CaliRec presents

our improvement rate of recommendation performance from CaliRec. On the one hand, TecRec

obtains better results (Recall@K and NDCG@K) than the traditional CaliRec algorithm. For

example, when we set the calibration weight λ = 0.75, Recall@10 improves 59.7% from BPR +

CaliRec and 42.0% from SASRec + CaliRec settings, respectively. This improvement indicates

that a reasonable estimation of users’ taste distribution would provide not only a more reasonable

recommender list but also more accurate results.

Table 5.2 also shows the comparison of the recommendation results between the proposed

TecRec with BPR and SASRec (refer to Column ∆Base). The Recall@K and NDCG@K improves
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in most of the calibration-weight settings (except λ = 0.99), e.g., when we set the calibration weight

λ = 0.5, Recall@10 improves 10.5% from BPR and 4.3% from SASRec, respectively. Firstly, this

improvement shows that there is not necessarily a trade-off between the distribution adjustment

and accurate recommendation. A better estimation of taste distribution will produce more accurate

recommendation results. Secondly, the recommendation results improve by different amounts for

different base methods (e.g., ∆BPR = 10.5% v.s. ∆SASRec = 4.3%). One possible reason for the

larger improvements of BPR + TecRec over BPR is TecRec’s inherent consideration of sequence

(which is absent from BPR). In contrast, the improvement over SASRec is smaller, possibly since

sequence is already part of that method. Note however that conventional sequential recommenders

are still limited in addressing “taste distortion”, which uses explicit categories as the preference rule

(refer to Figure 5.8). Third, comparing the results with the oracle results (refer to Figure 5.5), there

is still much room for improvement by better estimating the taste distribution.

Besides, for evaluating the recommendation results in all aspects, we also display theRecall@K

and NDCG@K comparing TecRec with CaliRec with the same base – SASRec – on Figure 5.10.

For each setting of K, TecRec performs better than CaliRec for all settings of calibration trade-

off, λ, and performs even better than SASRec for most settings of λ (excepts λ = 0.99). More

specifically, with the growth of K, the improvement from the CaliRec increases more quickly (refer

to Figure 5.10). For example, when we set λ = 0.75 on the ML-1M dataset, comparing with the

34.6% improvement from SASRec + CaliRec on Recall@5 results, the improvement increases to

42.0% and 43.4% on Recall@10 and Recall@15 recommendations, respectively. However, on the

contrary, this improvement from the base recommender only increases more slowly. For example,

when λ = 0.75, comparing with the 4.59% improvement from SASRec on Recall@5 results,

the improvement drops to 4.44% and 3.40% on Recall@10 and Recall@15 recommendations,

respectively. Similar observations and results are presented on NDCG@K. One explanation is

traditional methods provide less taste distortion when K is larger (recall Figure 5.9). Another

explanation is that every user’s testing data has been set to only the next stage with β movies.

Therefore, the positive effect from the predicted taste distribution could be tapering off. This
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(a) Recall@K

(b) NDCG@K

Figure (5.10) Recommendation results comparison between CaliRec and TecRec with the same base
SASRec on ML-1M dataset.‡

72



observation also motivates our continued research: how can we accurately predict users’ taste

distribution for the next few stages, rather than just one?

5.5 Summary

In this chapter, we first identified the taste distortion problem – a representative instance of

the distribution bias of the predicted user’s taste. We empirically showed the prevalence of this

problem through a data-driven study. Then, we proposed a Taste-enhanced calibrated Recommender

(TecRec) that incorporates a time-series neural network sub-model to predict users’ preference

shifts. Results show TecRec improves both taste distribution estimation (i.e., mitigating both

the rabbit hole effect and the taste distortion problem) and recommendation quality, compared

with traditional distribution-aware recommenders, as well as diversity-focused and sequential

recommenders. Besides, the proposed recommender offers interpretable taste distribution (by

respecting a user’s existing preferences), and can be integrated into existing recommenders without

re-training the original recommendation pipeline.
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6. MITIGATING DISTRIBUTION BIAS IN DYNAMIC RECOMMENDATION

In Chapter 4 and Chapter 5, we investigated two types of distribution bias in recommendation

results: the target customer distortion problem and the taste distortion problem. These two studies

follow the style of most other state-of-the-art distribution-aware recommenders by focusing on

the one-shot static setting. In this chapter, we study the general class of distribution bias in a

dynamic environment. That is, we consider a recommendation setting where users and the system

dynamically evolve, which more closely reflects how users engage with these systems. We begin

this chapter by clarifying the key differences of distribution bias between the static and dynamic

environments.

As we discussed in Chapter 5, echo chambers and rabbit holes are two serious threats to the

ongoing success of recommendation systems. Both can narrow down a user’s interest areas, leading

to undesirable (and often unforeseen) outcomes [18, 118, 119, 120, 21, 22, 23]. As discussed before,

there is evidence of users descending into ideological bubbles within just a few clicks [120]. While

there are many factors that contribute to the rise of such threats, we view these as examples of a

general class of distribution bias problems. Distribution bias arises due to a preference misalignment

that can be iteratively exacerbated as a recommendation system evolves. For example, consider

an ostensibly gender balancing job candidate system that initially identifies slightly more men

for software engineering positions. Over time, the system’s initial preference for gender balance

(the distribution of interest in this case) may be skewed towards identifying mostly men due to a

feedback loop if the system ignores the preferred balanced gender distribution.

Figure 6.1 illustrates this problem of distribution bias. At time t, the user clicks three blue

items and one orange item from the system’s recommendation list (here, colors could correspond to

genders, political ideology, genres, or other item attributes of interest). Once the system is retrained

based on this new feedback, it recommends a new list at time t+ 1. But what should the distribution

of these items be with respect to the attributes of interest?
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Figure (6.1) An illustration of preference misalignment in dynamic recommendation

• (I) An accuracy-driven recommender (i.e., one that focuses solely on optimizing an accuracy

metric like precision or NDCG without regard for distributional impacts) may amplify a user’s

interests in blue items, leading to an over-emphasis on blue items to the detriment of other

items; over time, the feedback loop of new user feedback and model retraining may further

exacerbate this problem.

• (II) A distribution-aware recommender [18, 77, 123, 24] aims to ensure that a particular

preference distribution is reflected in the recommendations that a system makes, so that the

system neither over-emphasizes main interest areas, nor under-serves lesser areas. However,

existing works have focused primarily on one-shot static settings, ignoring the distorting

effects present in dynamic environments, or fixing on a user’s prior preferences without regard

to changes over time in these preferences.

• (III) A better recommender, we posit, should seek to balance distribution preferences with the

utility of the system, and do so intelligently as the system evolves. We hypothesize that by

dynamically estimating a user’s preference distribution in the next stage and recommending

appropriate items, this could lead to a mitigation of distribution bias and more engagement

from the user (e.g., in terms of clicks or other feedback).

But first, is distribution bias a real problem as we have asserted? While there has been recent
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interest in simulating and modeling dynamic recommendation in the context of feedback loops, e.g.,

[140, 141, 142, 64, 65, 67], there are no studies of distribution-aware recommendation or distribution

bias in this setting. Hence, this chapter begins by conducting a data-driven study of distribution bias

in dynamic recommendation (in Section 6.2). We find that distribution bias is a seemingly inherent

outgrowth of traditional accuracy-based recommenders, wherein a small initial distribution bias

grows as the dynamic recommendation iterates. Further, we demonstrate that existing distribution-

aware approaches that have been proposed in the context of static recommendation (i.e., in a

traditional one-shot train/test split scenario, versus a dynamic system that iteratively updates as

is more common in real-world applications) does not mitigate this distribution bias in dynamic

recommendation settings and may even increase the bias level.

Based on this study, we next propose a dynamic distribution-correction framework that aims

to close the gap between the “better” recommender and what is practical (in Section 6.3). The

proposed method dynamically corrects the preference distribution in each loop of recommendations

based on the consideration of both a user’s prior interactions and dynamic preference shift. The

proposed method carefully incorporates user feedback in the dynamic recommendation loop to

mitigate distribution bias.

Finally, with experiments based on real-world datasets, we analyze the effectiveness of the

proposed approach and compare it with both accuracy-driven recommenders and conventional

distribution-aware recommenders (in Section 6.4). Empirical results show the proposed method can

strongly mitigate distribution bias by recommending items with a closer preference distribution to a

user’s historical and future preferences, resulting in an increase in agreement with the recommended

items and improved recommendation utility.

6.1 Preliminaries

Suppose we have a user set U = {1, 2, 3, . . . ,M}, and an item set I = {1, 2, 3, . . . , N} in the

system. We use a binary user-item interaction matrix H ∈ {0, 1}M×N to capture a user’s activities

over time, where H0:t
u,i = 1 indicates that user u ∈ U has interacted with item i ∈ I up to time t,

otherwise H0:t
u,i = 0. This interaction matrix H is updated after every user activity (e.g., clicking
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an item). From an oracle perspective that can view all user-item interactions, we refer to such

an “all-seeing” matrix as H∞; therefore, we define the rest of the ground truth interactions as

Ht:∞ = H∞ −H0:t.

Furthermore, we assume there are labels of interest associated with each item. These labels

can vary by domain, but might reflect item categories, gender, location, or other attributes that are

important from a distribution-aware perspective. Without loss of generality, we refer to these labels

as a genre set G = {1, 2, 3, . . . , G}. Since an item may belong to more than one genre, each item i

has a genre vector ci:

ci =
[κi,g1

Σ
,
κi,g2
Σ

, · · · , κi,gG
Σ

]
(6.1)

where gj ∈ G, Σ =
∑
gj∈G

κi,gj , and κi,gj is a binary variable where κi,gj = 1 if i belongs to genre gj .

Preference Distribution of Past and Future. In the following, we denote the historical preference

distribution over these genres up to time t as Pastt. We first define u’s preference ratio for genre gj

up to time t as Pasttu,gi:

Pasttu,gj =

∑
i∈IH

0:t
u,i × ci,gj∑

i∈IH
0:t
u,i

(6.2)

where H0:t
u,i is the entry in uth row and ith column of H up to time t. Thus, we define user u’s entire

preference distribution up to time t as a vector:

Pasttu =
[
Pasttu,g1 ,Past

t
u,g2

, · · · ,Pasttu,gG
]
. (6.3)

Similarly, we can compute user u’s preference ratio for genre gj in the future as Futuretu,gj .

Although Futuretu,gj is unknown to the system, we can use it to evaluate how well the distribution

of a recommendation matches a user’s real (future) preference distribution.

Preference Distribution of Recommendation and Click. Following the design of many platforms,

we assume the system recommends to each user a list of k items. That is, in each iteration, the

recommender system would provide the Top-k items to a user, based on the predicted user-item

relevance for this iteration. We call such a recommendation list for u as Etu, which is a ranked list

with length of k. Thus, we calculate the preference distribution of iterative recommendation, Rectu,
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of predicted Top-k recommended items at time t as follows:

Rectu =
1

k

∑
i∈Et

u

ci. (6.4)

From the Top-k recommendation list Etu, a user would interact with (e.g., click) ones she liked.

We denote the set of items clicked from Etu at time t as Ct
u ⊆ Etu. We have Rectu to express the

preference distribution of the iterative recommendation; similarly, we denote Clicktu to express the

preference distribution of the user’s interactions in the current iteration:

Clicktu =
1

|Ct
u|
∑

i∈Ct
u

ci. (6.5)

Distribution Closeness. To compare the distance between two preference distributions a and b, we

use the Kullback-Leibler (KL) divergence [115] as the distribution closeness measure ϕ(·), where

ϕ(a||b) = 0 indicates the distributions agj and bgj are exactly the same for all gj ∈ G; and a larger

ϕ(a||b) indicates they are more distant. ϕ(·) is defined as below:

ϕ(a‖b) = −
∑
gj∈G

agj log
bgj
agj

. (6.6)

So far, we have defined four important preference distributions. Two correspond to a cumulative

perspective: the user’s historical distribution Pastt and the user’s future distribution Futuret. Two

correspond to an iterative perspective: the distribution at time t of recommendations Rect and the

distribution at time t of the user’s clicks Clickt. Given the distance ϕ(·), we analyze the distribution

closeness from the following perspectives:

• ϕ(Pastt‖Rect): How does the current recommended preference distribution match the user’s

historical distribution? Conventional recommenders ignore this preference distribution,

leading to distribution bias such as in the rich get richer effect [18, 24]. In contrast, the main

purpose of a distribution-aware recommender is to reduce ϕ(Pastt‖Rect) to mitigate such

bias.

• ϕ(Futuret‖Rect): How does the current recommended preference distribution match the user’s

real future distribution? A large ϕ(Futuret‖Rect) indicates the presence of distribution bias
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Algorithm 2: Dynamic Recommendation
Initialization: Collect initial feedback H0 from users by showing random k items.
Bootstrap: Train recommendation model by H0, and get the predicted user-item relevance.
for t = 1 : T do

Recommends Top-k items Etu to u based on predicted user-item relevance from Ht−1;
Collect u’s new clicks Ct

u in iteration t;
Ht = Ct

u + Ht−1;
if t mod L == 0 then

Re-train model by Ht ;
Update predicted user-item relevance from Ht;

end

between the recommendation list and a user’s evolving interests [143]. Such evaluation has

been ignored by traditional distribution-aware recommenders that has been proposed in a

static setting.

• ϕ(Clickt‖Rect): How well does the user agree with the preference distribution provided by

the current recommendation? Similar to the previous perspective, the consideration of

ϕ(Clickt‖Rect) has not been studied in traditional distribution-aware recommenders. For

example, suppose among the current top-20 job candidates recommended, there is a 80%:20%

ratio between females and all other genders. If four of the 20 candidates are interviewed (in

our notation, a “click”) but the ratio is 50%:50% for these four, then there is a large gender

distribution gap.

In the rest of the chapter, we first aim to investigate the degree to which such distribution bias

does manifest in dynamic recommendation. Then we propose a dynamic distribution-correction

framework that aims mitigate this distribution bias. Finally, we empirically evaluate the proposed

approach and compare it with both accuracy-driven recommenders and conventional distribution-

aware recommenders.

Dynamic Recommendation. To study the presence of distribution bias over time, we investigate a

dynamic recommendation process as summarized in Algorithm 2. In the beginning, for each user,

the system randomly exposes several items to bootstrap the user and thus collects initial user-item
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clicks. Based on the initial feedback data H0, a recommendation model is trained. Then, as users

come to the system one by one, the system uses the up-to-date model to provide k ranked items Etu

as recommendations and collects new user-item clicks Ct
u. After every L users visit, the system

retrains the recommendation model with all clicks collected up to now.

6.2 A Data-driven study of Distribution Bias in a Dynamic Environment

This section begins our investigation of distribution bias in dynamic environments. We adopt two

datasets that contain clearly defined genres, which help identify a preference distribution. The first

dataset is the MovieLens-100K (abbr. ML-100K) dataset [96], which contains 100,000 user-movie

interactions collected from 943 users and 1,862 movies. The second is the Amazon CD & Vinyl

(abbr. Amazon-CD) dataset [95], which contains 24,225 user-item interactions collected from

744 users and 798 songs, where we keep only users who have at least 100 interactions and items

that have 20 interactions for density consideration. More details are shown in Table 6.1. For each

item, we use the genre available in each dataset: ML-100K contains 19 genres, and Amazon-CD

contains 11 genres. One item may belong to one or several genres. This genre information lets us

build each user’s preference distribution. We feed these datasets into our dynamic recommendation

environment and analyze the first 5,000 recommendation iterations.* In the following, we study the

preference distortion problem in the context of a standard recommender, Matrix Factorization (MF),

and a conventional distribution-aware recommender (CaliRec) [18]. Experiments with other tested

algorithms show similar results; our emphasis here is on the general problem of distribution bias in

dynamic recommendations.

*Users in our simulation have a fixed number of iterations with items (ground truth, H∞). As time goes by, the rest
of the ground truth Ht:∞ for each person will gradually decrease. Therefore, using the preference distribution of a
limited number of ground truth data (Clickt:∞) would not be sufficient to express users’ real preference distribution in
the future. To avoid such distortion, we checked the ratio of cumulative clicks in each iteration out of the whole ground
truth of two datasets used in this work. We found, up to iteration t = 5, 000, the cumulative click ratio only reaches
27.6% of all clicks in the ML-100K dataset and reaches 22.4% in Amazon-CD dataset, respectively. That is, there are
still more than 70% ground truth are not revealed by the system. In other words, the pool with such a great number
of ground truth is still trustworthy to express users’ real preference in the future (after iteration t). Therefore, unless
particularly stated, the following analysis will be shown based on iteration t = 0 to 5, 000.
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#User #Item #Genre #Interaction Density(%)

ML-100K 943 1,862 19 1,000,209 6.30
Amazon-CD 744 798 11 24,225 4.08

Table (6.1) Dataset statistics for distribution bias analysis.

6.2.1 Distribution Bias: Analysis and Observations

Traditional approaches for making recommendations are not distribution-aware by design. There-

fore, as many related research works have found, the recommendation results may cause preference

biases, e.g., echo chambers or diversification issues [18, 24]. However, recently, distribution-aware

recommendations (e.g., CaliRec) try to match the preference distribution of the recommendations to

a user’s historical interactions [24, 18]. In our dynamic environment, the objective is then to match

the preference distribution of the recommendations in each iteration (Rect) with the distributions

revealed through historical interactions (Pastt): a lower value of ϕ(Pastt||Rect) indicates better

distribution matching (and less distribution bias). As we have discussed in Section 6.1, a dynamic

environment raises other important criteria which we shall study as well.

In the following, we use ML-100K as an example to fully analyze the results, and the other

dataset presents similar observations and results. Through this analysis, we aim to illustrate how

traditional accuracy-driven recommenders introduce distribution bias into the dynamic environment,

and uncover if conventional distribution-aware recommenders could truly mitigate this distribution

bias, or possibly introduce new side effects as well.

6.2.1.1 Current Recommendation vs. History: ϕ(Pastt‖Rect)

First, we evaluate the distribution bias between a user’s historical preferences with the current

recommendation’s preferences by measuring ϕ(Pastt‖Rect), shown in Figure 6.2 (a). We observe

that as the system evolves, the recommended preferences by MF are gradually close to the historical

preferences (the blue line representing ϕ(Pastt‖Rect) drops down), illustrating that the system is

learning a user’s preferences from the historical interactions. The distribution bias between a user’s

history and the recommendation is gradually mitigated (although still with a high KL-divergence
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(a) Historical Matching (b) Future Matching

(c) Agreement

Figure (6.2) Distribution bias: (a) user’s historical preference Pastt vs. the recommended preference Rect,
(b) user’s real future preference Futuret with recommended preference Rect, and (c) user’s agreement with
the recommended preference Rect.
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> 1.3). However, such a learning process could narrow down the diversification of recommendation

and ignore the dynamic shifts in a user’s preference distribution. This may also cause rabbit holes

or echo chamber effects, as studied in many related works.

Figure 6.2 also illustrates the distribution bias induced by the distribution-aware recommender,

CaliRec [18]. To better demonstrate the effectiveness of CaliRec, we choose two settings with

different calibration weights (λ = 0.25 and λ = 0.50). As we can see, as the main objective of

CaliRec, the distribution bias between the recommendations and the user’s historical interactions

(Rect vs. Pastt) is dramatically reduced. Specifically, after a slight growth in the first 1,000

interactions. ϕ(Pastt||Rect) continues to fall and sustains around 0.3 after 5,000 iterations, which

is much lower than the results from MF (blue line). It is no surprise that CaliRec achieves this

result as this mitigation of distribution bias is its fundamental design. Up to now, the results from

CaliRec are better than MF in the first comparison (ϕ(Pastt||Rect)), indicating that a conventional

distribution-aware recommender can achieve its primary goal. In the following, we will analyze the

results from the other two perspectives.

6.2.1.2 Current Recommendation vs. Future: ϕ(Futuret‖Rect)

How does the current recommended preference distribution match the user’s real future dis-

tribution? A large ϕ(Futuret‖Rect) indicates the presence of distribution bias between the

recommendation list and a user’s evolving interests [143]. Such evaluation has been ignored by

traditional distribution-aware recommenders that has been proposed in a static setting. Comparing

with the future ground truth is an oracle-like perspective, and invisible to the system in practice.

However, this comparison may reveal the presence of distribution bias between the recommendation

list and a user’s evolving interests that is not captures by traditional distribution-aware recommend-

ers. As shown in Figure 6.2 (b), we observe that the distribution bias between the recommended

preference (Rect) and users’ real future preference (Futuret) by MF (blue line) stays on a lower

level (less than 1) in the entire observation window with a slightly increase. The increase indicates

that the recommendation is farther away from users’ actual preferences in the future.

Will the recommendations from a distribution-aware approach reveal less distribution bias
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over the future preferences of a user? To compare the current recommendation (Et) with a user’s

future ground truth, Figure 6.2 (b) presents disappointing outcomes comparing with Figure 6.2 (a)

in the previous section. Specifically, comparing the distribution of the current recommendation

(Rect) with users’ real future preference (Futuret), CaliRec gives a much worse estimation of

the distribution matching than the accuracy-driven recommender MF. With a large λ = 0.50, the

ϕ(Futuret||Rect) for CaliRec is almost 3× the results by MF, which indicates the distribution-

aware recommendation is farther from a user’s real preferences in the future, even comparing with

MF which completely ignores such distributional concerns. In other words, the distribution-aware

recommender does not adapt well to the change in preference distribution, leading to an emphasis

on outdated preferences as the system evolves.

6.2.1.3 User Agreement with Current Recommendations: ϕ(Clickt‖Rect)

Next, we turn to how well the user agrees with the preference distribution provided by the

current recommendation. We measure agreement here by actual user engagement (e.g., by clicks

or likes). Unlike the preference distribution in the current recommendation (Rect), the preference

distribution over the real clicks (Clickt) from this recommendation can more accurately reflect a

user’s real preferences at this stage. Furthermore, because the iterative interactions must be chosen

from the recommendation list (i.e., Ct
u ⊆ Etu), the preference distribution of a user’s real clicks

could reflect how well the user agrees with the recommended preference distribution. Figure 6.2

(c) shows this “agreement” from users to the recommended preferences. As we can see, after a

quick drop in the beginning, users increasingly disagree with the provided preference distribution

by the system. Surprisingly, CaliRec provides even worse results. As we can see, the degree of

disagreement (ϕ(Clickt||Rect)) by CaliRec has not only larger magnitude (more than 40% worse)

than MF, but also faster growth rate. These findings indicate that both traditional accuracy-driven

recommenders and distribution-aware recommenders may not provide a satisfying estimation of

user preferences.
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Figure (6.3) Recommendation utility: cumulative clicks.

6.2.1.4 Recommendation Utility

Finally, we examine the trade-off between recommendation utility and distribution matching.

This trade-off has been observed in the static setting [18, 24, 77, 143], but is it also present in

dynamic recommendations? In Section 6.2.1.2, we found that the preference distribution from the

conventional distribution-aware recommendation is far away from users’ real preference in the

future, and users increasingly disagree their recommended preference in each iteration. Therefore,

understandably, CaliRec would bring worse recommendation utility during the dynamic process.

We show users’ cumulative user-item clicks from each iteration in Figure 6.3. Compared with

the results from the accuracy-driven recommender (MF), CaliRec results in fewer clicks during

the entire observation window. Besides, the recommendation utility is even less as the calibration

weight (λ) increases. Specifically, there is a 2.4% drop with λ = 0.25 and a 18.6% drop with

λ = 0.50 from MF results at the end of 5,000 iterations. NDCG is also suffering from the calibration.

As a result, NDCG has fallen 2.6% with λ = 0.25 and 19.7% with λ = 0.50 by CaliRec comparing

with the results from MF.
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6.2.2 Summary and Expectation

In sum, Figure 6.2 captures the different distribution bias issues that arise in dynamic recom-

mendation for both accuracy-driven recommenders and distribution-aware recommenders. These

results suggest an opportunity to improve upon the mitigation of distribution bias in dynamic recom-

mendation. We propose that such an approach should be (1) aware of the user’s prior preference

to avoid the rich-get-richer effect or to narrow down users’ interest (i.e., a lower ϕ(Pastt||Rect)),

(2) capture user’s real preference in the future and try to recommend matching this preference

(i.e., a lower ϕ(Futuret||Rect)), and (3) most importantly, such recommendation should main-

tain sufficient accuracy to enable user agreement with this the preference provided (i.e., a lower

ϕ(Clickt||Rect)).

6.3 DisCo: A Distribution-Correction Approach

In this section, we introduce a new approach called DisCo – Dynamic Distribution Correction

– for mitigating distribution bias in dynamic recommendations. DisCo is motivated by four key

research goals following the analysis in the previous section:

• RG0. Reflect user’s historical preference into recommendation – ⇓ ϕ(Pastt||Rect)

• RG1. Predict users’ future preference and reflect it in the recommendation – ⇓ ϕ(Futuret||Rect)

• RG2. Stimulate user agreement with the recommended preference – ⇓ ϕ(Clickt||Rect)

• RG3. Improve recommendation utility by mitigating distribution bias – ⇑ Utility

Given that conventional distribution-aware recommenders already achieve the goal of matching

user’s historical preference (RG0), we focus on RG1, RG2, and RG3 as motivations to introduce

our proposed approach. Concretely, DisCo is characterized by three key contributions: (i) first,

we introduce a distribution-matching component to incorporate each user’s historical preference

distribution into the recommendation, so that DisCo is fundamentally distribution-aware (Section

6.3.1); (ii) since our data-driven study showed how naively matching distributions to can raise
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other preference distortion problems, we next introduce a false-positive preference correction

component to better model preference distributions in a dynamic environment (Section 6.3.2); and

(iii) finally, we incorporate these two components into a distribution-aware re-ranking mechanism

to dynamically correct for distribution bias at each step of the recommendation loop (Section 6.3.3).

6.3.1 Distribution Matching

The initial goal RG0 (⇓ ϕ(Pastt||Rect)) motivates us to adopt a user’s prior preference

distribution as a reference. Inspired by conventional distribution-aware recommenders (e.g., [18,

143]), we aim to match the preference distribution of the current recommendation (Rect) to a

user’s historical distribution (Pastt) through a distribution-matching component (what we refer

to as DM in the following). But how can we enable this distribution matching between the past

and the current recommendations? A natural idea is to directly measure the distance between two

distributions using KL-divergence and use this distance to drive the distribution matching. However,

directly using KL-divergence to find the optimal set is a combinatorial optimization problem and

NP-hard [18]. Prior research [137] has shown that the greedy optimization of this problem could be

equivalent to the greedy optimization of a surrogate sub-modular function. Hence, we define ϕ′(·)

as a step-by-step distribution-closeness measure derived from the original Kl-divergence function

that supports efficient computation. The derivation is shown below:

ϕ′
(
Rect||Pastt

)
= −

∑
g∈G

Rectg log
Pasttg
Rectg

=
∑
g∈G

Rectg logRectg −
∑
g∈G

Rectg logPasttg

= Entropy(u)︸ ︷︷ ︸
constant

−
∑
g∈G

Rectg logPasttg

' −
∑
g∈G

Rectg logPasttg

(6.7)

where Pasttg and Rectg are defined in Eq. (6.2) and Eq. (6.4), respectively. Entropy(u) refers to

the current recommended preference distribution, which is a constant once a recommendation is

provided and will not reflect the closeness between the recommended preference distributions and
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user’s historical ones. Hence, based on the original Eq. (6.6), we use ϕ′(·) in each iteration as the

distribution matching component to re-rank the recommendation list.

6.3.2 False-Positive Correction

This distribution matching component aims to match the user’s historical preference distribution

in the current recommendations. However, solely relying on such historical preferences may

not reflect the future interests of the user as we highlighted in the data-driven study in Section

6.2. Recall that we also aim to match a user’s future preferences (RG1 ⇓ ϕ(Futuret||Rect)),

leading to better matching of user engagement (RG2 ⇓ ϕ(Clickt||Rect)), and potentially providing

more accurate recommendations (RG3 ⇑ Utility). RG1 and RG2 motivate us to “guess” a user’s

preference distribution in the future. Therefore, we introduce the second component of our approach,

false-positive correction, which is referred to FPC in the following.

First, we define a binary false positive signal, Γ ∈ {0, 1}, as an indicator that item i was exposed

to user u but the user did not interact with it (e.g., click or play), defined as below:

Γtu,i =


1, if i ∈ Etu and i 6∈ Ct

u;

0, Otherwise.
(6.8)

Γ ∈ {0, 1} is a strong indicator whether we should penalize a recommendation or not. From the

perspective of items, we should penalize a recommendation i to u if Γu,i = 1. In this work, we use

this indicator to check whether a genre gj should be penalized if many items belong to this genre

but most have Γu,i = 1.

Next, we define the main factor of our FPC component, Fu,gj – a cumulative degree of dislikes

from user u to genre gi, defined as below:

Fu,gj =
T∑
t=0

ρT−t × ∑
i∈Et

u,k∈[1,|Et
u|]

Γtu,i × ci,gj × δk

 . (6.9)

Here, we first introduce a temporal discount factor, ρ ∈ [0, 1], to reduce the impact from

users’ preference long ago. ρT−t is steadily declining while t→ 0. Next, we check the impact of

preference distribution from users’ activity in each iteration. For each item i ∈ Etu recommended by
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the system, if the false positive signal is 1, we should give a penalty to the genre that item i belongs

to. For example, if a system continually recommends Sci-Fi movies (which may be liked by u a

long time ago) to u, but most of the recommendations are poor (Γtu,i = 1), that indicates that Sci-Fi

movies have been over-represented. Hence, we should lessen recommendations of this genre. Given

the truth that item i may belong to several genres, we penalize each genre according to their weight,

ci,gj .

Last but not least, we consider the position bias in this correction formula as well. Many research

studies indicated the probability to examine items at top-ranking positions is higher than at lower

positions in the recommender system [144, 66]. Here we more heavily penalize false-positive genres

ranked at the top of the recommendation list by using the position bias δk = e
log2(1+k)

, where k is

the position and e is Euler’s number. Up to now, all item with Γu,i = 1 contribute equally to the

degree of dislike Fu,gj . However, we should also consider an item-wise weight to differentiate the

impact for each item Γu,i = 1. Similar to Fu,gj , we define ωu,i as the dislike degree from user u to

item i as below:

ωu,i =
T∑
t=0

ρT−t × Γtu,i × δk (6.10)

where ωu,i is the item-wise weight to impact the degree of dislike from u to a genre gj . That is to say,

given two items i and j with exactly the same genre vector (ci = cj), if i has been recommended

more times and u did not interact with it, we should penalize the genre (which i and j belonging to)

more from the behavior of recommending i than from the behavior of recommending j. We apply

this weight and use ωu,i ×Fu,gj as the final penalty.

Now, we already have user’s degree of dislike from a user u to a genre gj . We will now reflect

this preference (dislike) into each individual item i. We finally define our FPC component, C, as

below:

Cu,i = ωu,i
∑
gj∈G

Fu,gj (6.11)
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Algorithm 3: DisCo Re-ranking Process
Input: u, Dt, Pasttu, λ, α, β, K
Output: Ttu ; // Recommendation for u from DisCo
Ttu ← ∅;
Etu = item list sorted by predicted user-item relevance in t;
while |Ttu|< K do

i∗ ←
arg max
i∈Et

u\Tt
u

[
(1− λ)×

∑
v∈Tt

u∪{i}

Du,v

|Ttu|+1︸ ︷︷ ︸
Accuracy component

+α× ϕ′
(
Pasttu,

∑
v∈Tt

u∪{i}

cv
)

︸ ︷︷ ︸
Distribution Matching Component

+ β ×
∑

v∈Tt
u∪{i}

Cu,v
|Ttu|+1

]
︸ ︷︷ ︸

False-Positive Correction Component

;

Etu ← Etu \ {i∗};
Ttu ← Ttu ∪ {i∗} ; // Update optimal result

end
return Ttu;

6.3.3 Re-Ranking with Distribution Correction

Finally, we incorporate both distribution matching and false-positive correction into a distribution-

aware re-ranking process that can be applied to any existing recommendation algorithm. That is

to say, for the recommendation list provided by the system from each iteration, we re-rank the

recommendation list by adding the corrections. Such re-ranking follows a long line of related work

[24, 18, 113, 114, 143] and can be deployed for existing approaches without a need to modify

production or legacy code. In this setting, users would examine and click from the re-ranked

results and provide feedback to the system; therefore, the re-ranking process would impact the

system training in the closed feedback loop. We summarize this re-ranking process with distribution

correction in Algorithm 3.

In Algorithm 3, we first initialize a new list Ttu as the final recommendation in iteration t (line

1). From the original recommendation result, we sort items according to the predicted user-item

relevance score as the candidate pool Etu (line 2). Next, we iteratively choose the optimal item

to feed into Ttu, by calculating the corrected relevance score (line 4 − 6). λ, α, and β are the

hyper-parameters to control the contribution of relevance component, DM component, and FPC

component, respectively. We then delete the optimal item i∗ from the candidate pool Etu and feed
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it into Ttu. We continue this process (line 3 − 8) until we find K optimal items to recommend.

Specifically, to balance the contribution from each component, we define the relationship of each

hyper-parameter weight as λ = α + β. In this way, in the following section, we can fairly compare

our approach with the baseline method based on the same weight of the relevance score (λ).

6.4 Experiments and Results

In this section, we first investigate the impact of hyper-parameters of DisCo. Secondly, we eval-

uate the effectiveness of the proposed method for different settings of the calibration weight. Then,

we compare DisCo with accuracy-driven recommenders and distribution-aware recommenders,

corresponding to our four research goals listed in Section 6.3.

6.4.1 Hyper-parameter Tuning

The two main components of DisCo are the DM component controlled by α and the FPC

controlled by β. To balance the contribution and effectiveness of these two components, we define

γ = α−β
λ

then analyze the relationship between these two knobs. The value of γ ∈ [−1, 1] given

that λ = α + β. Specifically, γ = −1 means we only consider FPC and ignore the DM , γ = 0

means two components equally contribute to the final ranking, and γ = 1 means we only consider

the DM .

First, we focus on RG1 and check which setting of γ could bring the best preference distribution

closeness to a user’s future preferences. Figure 6.4 (a) shows the distribution closeness between a

user’s future preferences with the preference distribution of the iterative recommendation. Again,

γ = 1.0 indicates that we do not take the FPC component, which is similar to a traditional

distribution-aware recommender (e.g., CaliRec). As we can see, with the falling of γ from 1 to

-0.8, the preference distribution of iterative recommendation is closer to a user’s real preferences

in the future. However, at the extreme case of γ = −1.0, which means we ignore the matching

of historical preference at all, ϕ(Futuret||Rect) is worse than some larger γ settings (i.e., γ =

-0.4, -0.6, or -0.8). Besides, comparing with the result from accuracy-driven recommender MF, we

observe better results after 1,500 iterations when setting γ as -0.6 or -0.8.
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(a) Future (b) Agreement

Figure (6.4) Distribution bias between users’ real future preference with the current recommended prefer-
ence (left) and users’ interactive agreement of the recommended preference (right) by different settings of
γ.
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‘

Figure (6.5) Recommendation utilities on different settings of γ.

Next, we move to RG2. How do users agree with the iterative recommended preference

distribution? In Figure 6.4 (b), we observed that when γ = 1, the degree of agreement is worse than

the result from MF. With the decline of γ from 0.8 to -0.8, this degree is getting better (although

without significant difference), and the degree of agreement is slightly worse when γ = −1 than

γ = -0.4, -0.6, or -0.8.

Then, we focus on RG3 and check how recommendation utility will change different values of

γ. In Figure 6.5, we observed that the recommendation utility (both cumulative clicks and NDCG)

is getting better with the growth of γ at the beginning. After reaching a peak (clicks at γ = −0.6

and NDCG at γ = −0.8), recommendation utility then declines. In the extreme case, when γ = 1,

we see the dramatic drop of cumulative clicks and NDCG. Recall the preference distribution is

getting closer to the user’s real future preferences with the decline of γ; therefore, in the following

section, we chose γ = −0.6 as our hyper-parameter setting.
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6.4.2 Calibration Knob

Similar to conventional distribution-aware recommendations, DisCo relies on several “knobs”

(λ, α, and β) to control the degree of calibration. In Section 6.4.1 we discussed the relationship

among these three knobs, and found the optimal proportion among them (γ = −0.6 means

α = 0.2× λ and β = 0.8× λ). Therefore, in this section, we analyze the results for the approach

with different settings of λ.

First, we focus on the distribution closeness with the real future data – one of our important

criteria. Figure 6.6 (a) shows the distribution closeness between the preference distribution of

a user’s future ground truth Futuret with the recommended distribution Rect in the current

iteration t with different settings of λ. With the growth of λ, the preference distribution of iterative

recommendation is farther away from the real future distribution. Specifically, when λ = 0.50, the

distribution closeness from DisCo is even worse than the results from MF. Results with λ = 0.10

are slightly better than the results with λ = 0.25 in the whole observation period, and both of

them are better than results from MF after 1,400 iterations. Figure 6.6 (b) shows user’s degree

of agreement to the recommended preference distribution. Different from the result shown in (a),

DisCo with all three settings of λ have better agreement than MF, and DisCo with λ = 0.10 and

λ = 0.25 have similar results.

Next, we focus on the recommendation utility. Figure 6.7 shows the cumulative clicks using MF

and DisCo with different settings of λ. The results with λ = 0.10 and 0.25 are very similar during

the entire observation period, and slightly better than the result from DisCo with λ = 0.50; as we

expected, results from all three settings are better than the result from MF.

6.4.3 Benchmark Results

In the following, we compare the results from the proposed DisCo approach with an accuracy-

driven recommender (MF) and the conventional distribution-aware recommender (CaliRec) under

the same configuration of calibration (λ).
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(a) Future (b) Agreement

Figure (6.6) Distribution bias between users’ real future preference with the current recommended prefer-
ence (left) and users’ interactive agreement of the recommended preference (right) by DisCo with different
settings of λ.

Figure (6.7) Recommendation utility – cumulative clicks by DisCo with different settings of λ.
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(a) Historical Matching (b) Future Matching

(c) Agreement

Figure (6.8) Preference distortion benchmark: (a) user’s historical preference Pastt vs. the recommended
preference Rect, (b) user’s real future preference Futuret with recommended preference Rect, and (c)
user’s agreement of the recommended preference Rect.

6.4.3.1 Appetizer: RG0. Reflect user’s historical preference into recommendation – ⇓ ϕ(Pastt||Rect)

Although matching the users’ historical preference is not our primary purpose, we still start to

analyze the closeness given that our DM component targets this goal. Figure 6.8 (a) illustrates

the closeness between users’ historical preference and the current recommendation’s preference

distribution. As we can see, comparing with the results from MF, both distribution-aware methods

mitigate this distribution bias, where CaliRec performs slightly better than DisCo. It is acceptable
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that DisCo loss a little in this comparison, since our three primary goals are matching users real

preference in the future (RG1), let user agree with the recommended preference (RG2), and improve

the recommendation utility taking benefits from this distribution correction (RG3). Next, we will

focus on these three research goals and analyze DisCo results with baselines.

6.4.3.2 RG1. Predict users’ future preference and reflect it in the recommendation – ⇓ ϕ(Futuret||Rect)

Figure 6.8 (b) shows the distribution closeness between users’ real future preference with the

iterative recommendation. Comparing with the results from CaliRec, DisCo presents a much

better distribution matching in the entire observation period. Furthermore, comparing with the

results from MF, DisCo also have better distribution estimations after around 1,000 iterations. In

addition, unlike the growing trend from distribution bias of users’ click by MF and CaliRec, DisCo

gives steady level of this bias. We discussed the difficulty of estimating users’ future preferences

in the dynamic environment. Therefore, such strong preference estimation results bring us great

confidence in enabling user agreement with the recommended preference distribution and achieving

better recommendation utility.

6.4.3.3 RG2. Stimulate user agreement with the recommended preference – ⇓ ϕ(Clickt||Rect)

Figure 6.8 (c) shows how users agree with the recommended preference distribution by comparing a

user’s real clicks in each iteration with the iterative recommended items. As we observed in Section

6.2, accuracy-driven recommenders are not designed with distribution bias in mind, so may raise

many problems such as echo chambers and rabbit holes. Therefore, a user’s disagreement with the

recommended preference distribution would become more serious every iteration. Conventional

distribution-aware recommenders even amplify this disagreement and provide even more erroneous

recommendations (larger ϕ(Clickt||Rect)). However, As shown in Figure 6.8 (c), DisCo greatly

mitigates this bias all the time, and eventually improved agreement more than 25% from MF and

more than 34% from CaliRec.
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ML-100K Amazon-CD

#click NDCG #click NDCG

∆ MF +6004 (+21.7%) + 0.0660 (+23.6%) +1153 (+16.4%) +0.0081 (+9.47%)

∆ CaliRec +6668 (+24.8%) +0.0729 (+26.7%) +2000 (+32.4%) +0.0139 (+17.6%)

∆ DisCono−FPC +8941 (+36.3%) +0.0962 (+38.6%) +2078 (+34.1%) +0.0115 (+14.2%)

∆ DisCono−DM +288 (+0.865%) +0.0035 (+1.05%) +1370 (+20.6%) +0.0097 (+11.6%)

Table (6.2) Difference between Recommendation Utility of DisCo and Other Benchmark Approaches

6.4.3.4 RG3. Improve recommendation utility by mitigating distribution bias – ⇑ Utility

Table 6.2 shows the improvement of cumulative clicks and average NDCG after 5,000 iterations by

DisCo from 4 baselines. Baselines include the accuracy-driven recommender MF, conventional

distribution-aware recommender CaliRec, as well as two variants of DisCo: DisCono−FPC

without FPC component (β = 0), and DisCono−DM without DM component (α = 0). From

the table, we find that with the same level of calibration weight (λ = 0.25), DisCo can generate

significantly more clicks than two conventional methods: after 5,000 iterations, 21.7% and 16.4%

more clicks are received on average for ML-100K and Amazon-CD dataset, respectively, comparing

with MF, and these improvements even reach 24.8% and 32.4% comparing with CaliRec. We

have similar observations when we compare with NDCG. These results suggest DisCo dashed the

stereotype that there is always a trade-off between calibration and recommendation. The comparison

between DisCo with DisCono−FPC and DisCono−DM suggests the importance of simultaneously

considering the previous preference distribution and carefully correcting for future preferences.

6.5 Summary

In this chapter, we deepened our understanding of distribution bias by conducting the first study

of this bias in a dynamic recommendation scenario. We first identified the preference distribution

biases in dynamic recommendation, and empirically showed the prevalence of these biases by
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both accuracy-driven recommenders and conventional distribution-aware recommenders through

a data-driven study. Then, we proposed a Distribution Correction Recommender (DisCo) that

dynamically corrects the preference distribution in interactive recommendations. Results show

that DisCo improves the closeness of the preference distribution in the recommendation with

users’ real future preference, and increases users’ agreement with the preference distribution of the

recommendations. Results also indicate that the recommendation quality can be improved compared

with accuracy-driven recommenders and conventional distribution-aware recommenders, giving

more evidence that there is not always a trade-off between calibration and recommendation.
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7. CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusion of this dissertation and potential future research

opportunities.

7.1 Conclusions

With the increasing ubiquity of bias in recommendation results, correspondent de-biasing ap-

proaches need more attention. Hence, this dissertation is first grounded in a holistic conceptual

framework for identifying bias in recommender systems from multiple perspectives. This disserta-

tion identifies gaps in the literature for identifying and addressing bias in recommender systems

through this conceptual framework. It then couples this conceptual framework with four new

methods for mitigating bias in recommender systems from different perspectives.

First, to mitigate the estimation bias for items with different ratings, we proposed the MLR

recommender system, which could improve the estimation of tail ratings with multi-latent represent-

ation. We conducted a data-driven investigation and theoretical analysis of the challenges posed by

conventional methods for estimating tail ratings, which lead to over- and under-estimations of tail

ratings, with particularly pronounced errors on controversial items. Our proposed MLR is explicitly

designed to estimate these tail ratings better. Experimental results show the estimation improvement

is especially great for those items far from the ratings mean. Furthermore, the proposed model is

generalizable and can be easily extended to take advantage of other conventional models.

Second, to mitigate the distribution bias of predicted target costumers, we proposed a target

customer re-ranking algorithm – U2I-CaliRec, for addressing the target customer distortion problem.

We began with a look at the taste distortion problem through analysis over all three datasets. Then

we illustrated how our proposed method could effectively adjust the class distribution of the target

customers for items toward the desired distribution, thereby mitigating the distortion problem.

Third, to mitigate the distribution bias of the predicted user’s taste, we proposed a Taste-

enhanced Calibrated Recommendation – TecRec. We first identified the taste distortion problem and
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empirically showed its prevalence through a data-driven study. Then, we proposed TecRec, which

incorporates a time-series neural network sub-model to predict users’ preference shifts. Results

show TecRec improves both taste distribution estimation and recommendation quality, compared

with conventional recommender systems. Besides, the proposed recommender offers interpretable

taste distribution and can be integrated into existing recommenders without re-training the original

recommendation pipeline.

Last but not least, we continue the studies of distribution bias and extended the application

scenario from static recommendations to dynamic recommendations. We empirically showed the

prevalence of these biases by both accuracy-driven recommenders and conventional distribution-

aware recommenders through a data-driven study. Then, we proposed a Distribution Correction

Recommender (DisCo) that dynamically corrects preference distribution in interactive recom-

mendations. Results suggest DisCo improves the closeness of preference distribution in the

recommendation with users’ real future preference, and increases users’ agreement of the recom-

mended preference. Results also suggest that the recommendation quality has been improved

compared with accuracy-driven recommenders and conventional distribution-aware recommenders,

dashed the stereotype that there is always a trade-off between the calibration and recommendation.

7.2 Future Research Opportunities

Our conceptual framework of bias in the recommendation system still has many research

opportunities and deserves more efforts. We identify three future research directions as follows:

• First, approaches are still missing to mitigate the bias between User Activities and Appear-

ance, as presented in Figure 1.1. In Chapter 4, we analyzed the distribution bias (Appearance)

of predicted target costumers with different demographics, e.g., gender and age. We can

expand this simple classification to a broad-view, such as active and inactive users. For

example, given the task of sending email advertisements with a limited number, does an active

user have more chance to be appeared in this email list (being predicted as target customer)?

This appearance bias is also related to the cold-start problem.
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• Second, many research works incorporate shopping sessions as a consideration of accuracy-

driven recommendations [145, 146, 147, 148]. Besides improving the recommendation utility,

this shopping session information could also be incorporated into predicting uses’ future taste

in the dynamic recommendations to mitigate the taste distortion problem. More additional

information, such as profiles of users and items, could also be employed to predict user’s

preferences in the future, mitigate the taste distribution bias, and avoid undesirable outcomes,

e.g., echo chambers or rabbit holes.

• Third, there is a solid motivation to analyze the formation of bias problems in the recom-

mendation result. In this dissertation, we analyzed the observed biases and proposed new

de-biasing approaches. However, how are these biases generated in the first place? How

can we avoid these biases from their source of generation? This “source control” brings

us the great research opportunity to analyze the generative mechanisms of biases and build

appropriate end-to-end bias-free recommender systems.
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